New Horizons in Chemical and Photochemical Dynamics
化学和光化学动力学的新视野
基本信息
- 批准号:EP/G00224X/1
- 负责人:
- 金额:$ 758.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemical change, whether caused by collisions between reactive atoms, radicals and molecules, or by absorption of light (photochemistry), is of fundamental importance in all branches of Chemistry. For example, synthesis of complicated organic molecules, such as those naturally occurring in plant and animal life, or needed to construct functional modern materials, requires an in-depth understanding of reaction mechanisms to design synthetic pathways. Ideas from physical chemistry based on thermodynamics and reaction rate theory underpin our ability to predict directions of chemical change and how quickly such change will occur. The fields of chemical reaction and photodissociation have sought to place such theories on a quantitative foundation built on deep understanding of the quantum mechanics of breakage and formation of chemical bonds. Potential energy surfaces (PESs) (based on the Born-Oppenheimer separation of the fast motion of light electrons from the slower motion of heavier atomic nuclei) are an essential concept because they provide a map of the energy landscape(s) over which chemical change occurs. Minima and barriers on the PESs correspond, respectively, to stable conformations of the atoms and short-lived transition states. Photodissociation involves dynamics on PESs lying higher in energy than the lowest, ground state, with the extra energy needed to reach these excited states provided by absorption of light. A powerful driver for advances in understanding of the dynamics of photochemical and reactive processes has been a close interaction between experimental and theoretical studies - arguably, the field has done much to stimulate the development of theoretical methods to calculate PE landscapes and describe the molecular dynamics on these surfaces. Such methods (subject to simplifying approximations) are now finding widespread use in molecular modelling of, for example, drug design, enzyme catalysis, and many other fields. The historical development of experimental and theoretical methods has relied on complementary studies of systems with only a small number of atoms (e.g. photodissociation of diatomic and triatomic molecules; reaction of atoms with diatomic molecules) so that accurate PESs can be computed and precise, quantum-mechanical (QM) scattering calculations carried out. Such experiments were mostly conducted in the gas phase, in the low-temperature and rarefied environment of a molecular beam, so that complicating factors of solvation, or interaction between molecules can be ignored. Considerable success with such systems has, for example, revealed the importance of exotic QM effects in chemistry such as tunnelling through reaction barriers, scattering resonances, non-adiabatic coupling between PESs, and interference between different pathways to the same products. For a photochemical or reactive system with 3 atoms, only 3 coordinates are required to describe all the possible arrangements of the atoms and the associated PEs can thus be computed for representative configurations spanning the entire PE landscape. We now seek a multi-pronged approach to extend such studies to more complicated systems, with the intention of learning about PE landscapes for larger molecules (for N atoms, 3N-6 coordinates are needed to describe the associated PE hypersurface), the effects of jumps between PE surfaces, and to examine how the energy landscapes and chemical dynamics are changed in the presence of solvent. In so doing, we will bring the fields of reaction and photodissociation dynamics closer to the types of chemical reactions used in synthesis by organic, inorganic and biological chemists. Our strategy involves development of new experiments and theoretical methods. The substantial challenges necessitate a consortium-based approach, in which complementary expertise in two Universities is brought together to address selected problems from which we can learn much about chemical change.
化学变化,无论是由反应性原子,自由基和分子之间的碰撞引起的,还是由光的吸收(光化学)引起的,在化学的所有分支中都具有根本的重要性。例如,复杂的有机分子的合成,如那些天然存在于植物和动物生命中,或需要构建功能性现代材料,需要深入了解反应机制来设计合成途径。基于热力学和反应速率理论的物理化学思想支撑了我们预测化学变化方向以及这种变化发生的速度的能力。化学反应和光解离领域试图将这些理论建立在对断裂和化学键形成的量子力学的深刻理解的定量基础上。势能面(PES)(基于Born-Oppenheimer分离轻电子的快速运动与较重原子核的较慢运动)是一个重要的概念,因为它们提供了发生化学变化的能量景观图。PES上的极小值和势垒分别对应于原子的稳定构象和短暂的过渡态。光解涉及PES上的动力学,其能量高于最低基态,达到这些激发态所需的额外能量由光的吸收提供。一个强大的驱动力的光化学和反应过程的动力学的理解进步一直是实验和理论研究之间的密切互动-可以说,该领域已经做了很多工作,刺激理论方法的发展,计算PE景观和描述这些表面上的分子动力学。这种方法(简化近似),现在发现广泛使用的分子建模,例如,药物设计,酶催化,和许多其他领域。实验和理论方法的历史发展依赖于对只有少量原子的系统的补充研究(例如双原子和三原子分子的光解;原子与双原子分子的反应),以便可以计算精确的PES,并进行精确的量子力学(QM)散射计算。此类实验大多在分子束的低温和稀薄环境中的气相中进行,因此可以忽略溶剂化或分子之间相互作用的复杂因素。相当大的成功与这样的系统,例如,揭示了外来QM效应在化学中的重要性,如隧道通过反应障碍,散射共振,PES之间的非绝热耦合,和不同途径之间的干扰相同的产品。对于具有3个原子的光化学或反应系统,仅需要3个坐标来描述原子的所有可能排列,并且因此可以计算相关的PE以用于跨越整个PE景观的代表性配置。我们现在寻求一种多管齐下的方法来将这些研究扩展到更复杂的系统,目的是了解更大分子的PE景观(对于N原子,需要3 N-6坐标来描述相关的PE超曲面),PE表面之间跳跃的影响,并研究在溶剂存在下能量景观和化学动力学如何改变。在这样做的过程中,我们将使反应和光解动力学领域更接近有机,无机和生物化学家在合成中使用的化学反应类型。我们的战略包括开发新的实验和理论方法。巨大的挑战需要一个财团为基础的方法,其中两所大学的互补专业知识汇集在一起,以解决选定的问题,我们可以学到很多关于化学变化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vibrationally resolved dynamics of the reaction of Cl atoms with 2,3-dimethylbut-2-ene in chlorinated solvents
氯化溶剂中 Cl 原子与 2,3-二甲基丁-2-烯反应的振动解析动力学
- DOI:10.1039/c2sc21267f
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Abou-Chahine F
- 通讯作者:Abou-Chahine F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Orr-Ewing其他文献
Andrew Orr-Ewing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Orr-Ewing', 18)}}的其他基金
Ultrafast Photochemical Dynamics in Complex Environments
复杂环境中的超快光化学动力学
- 批准号:
EP/V026690/1 - 财政年份:2021
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
Mapping Pathways in Photo-Catalytic Cycles using Ultrafast Spectroscopy
使用超快光谱绘制光催化循环中的路径
- 批准号:
EP/R012695/1 - 财政年份:2018
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
Kinetic Studies of Reactive Intermediates from the Oxidation of Atmospheric Alkenes
大气烯烃氧化反应中间体的动力学研究
- 批准号:
NE/P013104/1 - 财政年份:2017
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
Environmental applications of cavity enhanced spectroscopy in the mid infra-red region
腔增强光谱在中红外区的环境应用
- 批准号:
NE/H019758/1 - 财政年份:2010
- 资助金额:
$ 758.81万 - 项目类别:
Training Grant
New frontiers in quantitative infra-red to ultraviolet spectroscopy using diode and quantum-cascade lasers
使用二极管和量子级联激光器定量红外到紫外光谱的新前沿
- 批准号:
EP/E018297/1 - 财政年份:2007
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
The tropospheric photochemistry of formaldehyde
甲醛的对流层光化学
- 批准号:
NE/D001498/1 - 财政年份:2006
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
Adventurous Research in Chemistry at the University of Bristol 2005
2005 年布里斯托大学化学冒险研究
- 批准号:
EP/D051231/1 - 财政年份:2006
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
相似海外基金
Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
- 批准号:
2345607 - 财政年份:2024
- 资助金额:
$ 758.81万 - 项目类别:
Standard Grant
AMPQuest - Journeying to new horizons in treating drug-resistant infections.
AMPQuest - 迈向治疗耐药感染的新视野。
- 批准号:
BB/Y514019/1 - 财政年份:2024
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant
New Horizons in Quinonedimethide Chemistry
醌二甲基化学的新视野
- 批准号:
DP240100555 - 财政年份:2024
- 资助金额:
$ 758.81万 - 项目类别:
Discovery Projects
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 758.81万 - 项目类别:
Standard Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 758.81万 - 项目类别:
Studentship
Expanding horizons in language teacher identity and agency research: A phenomenological analysis of ALTs in Japan
扩大语言教师身份和机构研究的视野:日本 ALT 的现象学分析
- 批准号:
23K00699 - 财政年份:2023
- 资助金额:
$ 758.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Gravity, Horizons, and Beyond
量子引力、视界及其他
- 批准号:
2309634 - 财政年份:2023
- 资助金额:
$ 758.81万 - 项目类别:
Continuing Grant
WISE Horizons - Wellbeing, inclusion, sustainability and the economy
WISE Horizons - 福祉、包容性、可持续性和经济
- 批准号:
10064150 - 财政年份:2023
- 资助金额:
$ 758.81万 - 项目类别:
EU-Funded
New horizons in Electrostatic Force Microscopy
静电力显微镜的新视野
- 批准号:
EP/X018024/1 - 财政年份:2023
- 资助金额:
$ 758.81万 - 项目类别:
Research Grant