Ultrafast Photochemical Dynamics in Complex Environments
复杂环境中的超快光化学动力学
基本信息
- 批准号:EP/V026690/1
- 负责人:
- 金额:$ 1026.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sunlight powers many vital processes on Earth such as the growth of plants and the cleansing of pollutants from the atmosphere. Ultraviolet (UV) and visible wavelengths of the sunlight are absorbed by molecules which use the energy gained to drive chemical reactions, a process known more generally as photochemistry. This absorption of light changes the way the electrons are distributed within molecules, in turn affecting the chemical bonds which connect the atoms and determine the structure of the molecule. Photochemistry is therefore an effective way to initiate structural and chemical change and has the potential to be more sustainable than alternative ways to activate reactions, either by heating or by using a catalyst containing scarce and expensive elements. Nature has harnessed the benefits of photochemistry in many ways, including vision, photosynthesis and photomorphogenesis (the response of plant growth to light). Human technology is increasingly exploiting the energy of sunlight, for example to generate electricity in solar cells or to split water into oxygen and hydrogen for use as alternatives to fossil fuels.In a photochemical reaction, structural changes occur on very fast timescales. The initial electronic reorganization occurs in less than a thousand trillionth of a second, known as a femtosecond. This timescale is far shorter than anything in our everyday experiences: there are as many femtoseconds in a second as there are seconds in 30 million years. As the electrons change their arrangements in a molecule, some of the chemical bonds weaken or break and the molecule starts to change shape. These structural changes corresponding to movement of the constituent atoms are known as the nuclear dynamics (because the atomic nuclei move) and are slower than the motions of the electrons because of the much larger masses of the nuclei. Nevertheless, these structural changes can take place on timescales of tens or hundreds of femtoseconds - the so-called "ultrafast" timescale. Modern experimental techniques using lasers that generate pulses of light a few tens of femtoseconds long allow us to observe these nuclear dynamics as they happen, thereby providing extraordinary insights about how molecules respond when they absorb light. Accurate computer simulations of the complex dynamics of the molecules are now also becoming feasible but are made difficult by the quantum mechanical behaviour of the electrons and the nuclei as they move. In this programme, we will combine cutting-edge experimental and computational research methods to unravel how molecules undergo chemical changes activated by absorption of light. The array of complementary methods we will apply offers unprecedented insights. The changes that occur are heavily influenced by the environment surrounding a molecule, such as a liquid solvent (e.g. water) or a protein in a biological system. This environment can restrict the motions of the molecule and can drain away the energy provided by the absorbed light, dissipating it as heat. We will explore how a range of different environments influence photochemical pathways for different types of molecules, and we will measure how quickly the injected energy flows out to the surroundings. We will use this new knowledge to tackle two major questions of wider importance. The first concerns how a protein called UVR8 regulates the way that plants respond to sunlight, for example by seedling growth or flowering. The second addresses the way that aerosol particles containing organic molecules grow in the Earth's atmosphere, with consequences for the formation of clouds (in turn affecting the Earth's climate), reduction in air quality in cities, and deleterious effects on human health by particle inhalation. There will be further benefits to many other fields of research including solar energy conversion and sustainable synthesis of fine chemicals, pharmaceuticals, agrochemicals, and polymers.
阳光为地球上许多重要的过程提供动力,例如植物的生长和净化大气中的污染物。太阳光的紫外线(UV)和可见光波长被分子吸收,这些分子利用获得的能量来驱动化学反应,这一过程通常被称为光化学。这种光的吸收改变了电子在分子中的分布方式,进而影响了连接原子并决定分子结构的化学键。因此,光化学是引发结构和化学变化的有效方法,并且有可能比通过加热或使用含有稀缺和昂贵元素的催化剂来激活反应的替代方法更具可持续性。大自然已经在许多方面利用了光化学的好处,包括视觉,光合作用和光形态建成(植物生长对光的反应)。人类技术越来越多地利用太阳能,例如在太阳能电池中发电,或将水分解为氧气和氢气,用作化石燃料的替代品。在光化学反应中,结构变化在非常快的时间尺度上发生。最初的电子重组发生在不到一千万亿分之一秒的时间内,称为飞秒。这个时间尺度比我们日常经历中的任何时间都要短得多:一秒中的飞秒数与3000万年中的秒数一样多。当电子改变它们在分子中的排列时,一些化学键减弱或断裂,分子开始改变形状。这些与组成原子的运动相对应的结构变化被称为核动力学(因为原子核运动),并且由于原子核的质量大得多,因此比电子的运动慢。然而,这些结构变化可以在数十或数百飞秒的时间尺度上发生-所谓的“超快”时间尺度。使用激光产生几十飞秒长的光脉冲的现代实验技术使我们能够观察这些核动力学,从而提供关于分子在吸收光时如何反应的非凡见解。对分子的复杂动力学进行精确的计算机模拟现在也变得可行,但由于电子和原子核在运动时的量子力学行为而变得困难。在这个计划中,我们将结合联合收割机尖端的实验和计算研究方法,以揭示分子如何通过吸收光激活化学变化。我们将采用的一系列补充方法提供了前所未有的见解。发生的变化受到分子周围环境的严重影响,例如生物系统中的液体溶剂(例如水)或蛋白质。这种环境可以限制分子的运动,并可以耗尽吸收光提供的能量,将其作为热量耗散。我们将探索一系列不同的环境如何影响不同类型分子的光化学途径,并测量注入的能量流到周围环境的速度。我们将利用这些新知识来解决两个更重要的主要问题。第一个是关于一种名为UVR 8的蛋白质如何调节植物对阳光的反应,例如通过幼苗生长或开花。第二部分讨论了含有有机分子的气溶胶微粒在地球大气层中生长的方式,从而导致云的形成(进而影响地球气候)、城市空气质量下降以及微粒吸入对人类健康的有害影响。这将进一步有利于许多其他研究领域,包括太阳能转换和精细化学品、制药、农用化学品和聚合物的可持续合成。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UV Photoelectron Spectroscopy of Aqueous Solutions.
- DOI:10.1021/acs.accounts.2c00523
- 发表时间:2022-12-20
- 期刊:
- 影响因子:18.3
- 作者:Fortune, William G.;Scholz, Michael S.;Fielding, Helen H.
- 通讯作者:Fielding, Helen H.
Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane.
分子光开关四环烷的超快电子弛豫路径。
- DOI:10.1038/s41557-023-01420-w
- 发表时间:2024
- 期刊:
- 影响因子:21.8
- 作者:Borne KD
- 通讯作者:Borne KD
Time-Resolved X-ray Photoelectron Spectroscopy: Ultrafast Dynamics in CS$_2$ Probed at the S 2p Edge
时间分辨 X 射线光电子能谱:在 S 2p 边缘探测 CS$_2$ 中的超快动力学
- DOI:10.3204/pubdb-2023-05122
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gabalski I
- 通讯作者:Gabalski I
Time-resolved Imaging of Transient Charge Transfer Dynamics
瞬态电荷转移动力学的时间分辨成像
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Allum F.
- 通讯作者:Allum F.
Direct momentum imaging of charge transfer following site-selective ionization
位点选择性电离后电荷转移的直接动量成像
- DOI:10.1103/physreva.108.043113
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Allum F
- 通讯作者:Allum F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Orr-Ewing其他文献
Andrew Orr-Ewing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Orr-Ewing', 18)}}的其他基金
Mapping Pathways in Photo-Catalytic Cycles using Ultrafast Spectroscopy
使用超快光谱绘制光催化循环中的路径
- 批准号:
EP/R012695/1 - 财政年份:2018
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
Kinetic Studies of Reactive Intermediates from the Oxidation of Atmospheric Alkenes
大气烯烃氧化反应中间体的动力学研究
- 批准号:
NE/P013104/1 - 财政年份:2017
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
Environmental applications of cavity enhanced spectroscopy in the mid infra-red region
腔增强光谱在中红外区的环境应用
- 批准号:
NE/H019758/1 - 财政年份:2010
- 资助金额:
$ 1026.39万 - 项目类别:
Training Grant
New Horizons in Chemical and Photochemical Dynamics
化学和光化学动力学的新视野
- 批准号:
EP/G00224X/1 - 财政年份:2008
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
New frontiers in quantitative infra-red to ultraviolet spectroscopy using diode and quantum-cascade lasers
使用二极管和量子级联激光器定量红外到紫外光谱的新前沿
- 批准号:
EP/E018297/1 - 财政年份:2007
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
The tropospheric photochemistry of formaldehyde
甲醛的对流层光化学
- 批准号:
NE/D001498/1 - 财政年份:2006
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
Adventurous Research in Chemistry at the University of Bristol 2005
2005 年布里斯托大学化学冒险研究
- 批准号:
EP/D051231/1 - 财政年份:2006
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
相似海外基金
Femtosecond Time-Resolved Studies of the First 200 fs Photochemical and Photophysical Relaxation Dynamics in the Gas and Liquid Phases
气相和液相中前 200 fs 光化学和光物理弛豫动力学的飞秒时间分辨研究
- 批准号:
2102619 - 财政年份:2021
- 资助金额:
$ 1026.39万 - 项目类别:
Standard Grant
Analysis of dynamic factors controlling photochemical reaction pathways using a combination of quantum mechanical and molecular dynamics methods
结合量子力学和分子动力学方法分析控制光化学反应途径的动态因素
- 批准号:
20K05423 - 财政年份:2020
- 资助金额:
$ 1026.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrafast laser spectroscopy of photochemical dynamics in solution.
溶液中光化学动力学的超快激光光谱。
- 批准号:
2444077 - 财政年份:2020
- 资助金额:
$ 1026.39万 - 项目类别:
Studentship
CAREER: Quantum Dynamics of Photochemical Reactions in Solar Energy Conversions
职业:太阳能转换中光化学反应的量子动力学
- 批准号:
1845747 - 财政年份:2018
- 资助金额:
$ 1026.39万 - 项目类别:
Continuing Grant
Photochemical Strategies with Supramolecular Assistance to Monitor Cellular Dynamics in Living Organism
超分子辅助光化学策略监测活体细胞动力学
- 批准号:
1505885 - 财政年份:2016
- 资助金额:
$ 1026.39万 - 项目类别:
Continuing Grant
Development of Multidimensional Resonance Raman Spectroscopies for Studies of Photochemical Dynamics
用于光化学动力学研究的多维共振拉曼光谱的发展
- 批准号:
1504350 - 财政年份:2015
- 资助金额:
$ 1026.39万 - 项目类别:
Continuing Grant
Fs-VUV Generation: Mapping the Reaction Co-ordinate in Photochemical Dynamics
Fs-VUV 生成:绘制光化学动力学中的反应坐标
- 批准号:
EP/K021052/1 - 财政年份:2013
- 资助金额:
$ 1026.39万 - 项目类别:
Research Grant
CAREER: Controlling non-adiabatic reaction dynamics in solution: A window on the fundamental details of photochemical reactions
职业:控制溶液中的非绝热反应动力学:了解光化学反应基本细节的窗口
- 批准号:
1151555 - 财政年份:2012
- 资助金额:
$ 1026.39万 - 项目类别:
Continuing Grant
Evaluation of photochemical oxidant stress of crops based on ultra-short term growth dynamics using novel optical interferometric technique
利用新型光学干涉技术评估基于超短期生长动力学的作物光化学氧化胁迫
- 批准号:
22310026 - 财政年份:2010
- 资助金额:
$ 1026.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Surface photochemical reaction dynamics
表面光化学反应动力学
- 批准号:
20245005 - 财政年份:2008
- 资助金额:
$ 1026.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)