Primary Research Project: Functional MRI

主要研究项目:功能性核磁共振成像

基本信息

  • 批准号:
    7455932
  • 负责人:
  • 金额:
    $ 23.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Although there are several effective treatments for a major depressive episode, there are no reliable predictors of the likelihood of remission, response or non-response with an initial trial of either an antidepressant medication or psychotherapy. In prioritizing a role for direct measures of brain functioning in the development of new algorithms for clinical management of depressed patients, a systematic characterization of pretreatment patterns predictive of unambiguous remission to standard treatments is a necessary first step. This project will characterize imagingbased brain subtypes that distinguish groups of never-treated depressed patients who subsequently respond to pharmacotherapy or cognitive behavior therapy (CBT), respectively. A prospectively-treated cohort of 400 never-treated depressed patients randomized to receive either escitalopram, duloxetine or CBT for 1.2 weeks will define these subtypes. Resting-state BOLD functional magnetic resonance imaging (fMRI) scans will be acquired prior to initiating antidepressant therapy and at a fixed, early time point specific for each treatment. Pre-treatment scan patterns derived using multivariate analyses and associated with the six possible response outcomes (3 types of response; 3 types of nonresponse) will be used to determine whether pretreatment brain patterns can distinguish among outcome groups. A second fMRI scan, acquired early in the treatment course, will be used to assess the likelihood of response to the specific treatment assigned. The proposed studies are a first step towards defining brain-based subtypes predictive of differential treatment outcome in major depression. The data from these studies will also be entered into more complex algorithms integrating imaging findings with behavioral, environmental, biochemical and genetic information for individual patients.
虽然有几种有效的治疗严重抑郁发作的方法,但没有 首次试验缓解、缓解或无反应的可能性的可靠预测指标 要么是抗抑郁药物,要么是心理治疗。在确定直接措施的作用的优先顺序时 脑功能在抑郁症临床治疗新算法开发中的作用 患者,预测明确的预处理模式的系统特征 缓解到标准治疗是必要的第一步。该项目将表征基于图像的 区分从未接受治疗的抑郁症患者组的脑亚型 随后分别接受药物治疗或认知行为治疗(CBT)。一个 400名从未接受治疗的抑郁症患者的前瞻性治疗队列,随机接受 依思妥普兰、度洛西汀或CBT为期1.2周将定义这些亚型。休息态-粗体 在启动之前将获取功能磁共振成像(FMRI)扫描 抗抑郁药物治疗,并在固定的、早期的时间点针对每种治疗。前处理 使用多变量分析得出的扫描模式与六种可能的反应相关联 结果(3种类型的反应;3种类型的无反应)将用于确定是否 预处理脑模式可以区分不同的结果组。第二次功能磁共振扫描, 在疗程早期获得的,将被用来评估对 指定的具体治疗。拟议的研究是向定义基于大脑的第一步 预测重度抑郁症不同治疗结果的亚型。来自这些的数据 研究还将进入更复杂的算法,将成像结果与 为个别患者提供行为、环境、生化和遗传信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES B NEMEROFF其他文献

CHARLES B NEMEROFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES B NEMEROFF', 18)}}的其他基金

Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
  • 批准号:
    10367692
  • 财政年份:
    2022
  • 资助金额:
    $ 23.88万
  • 项目类别:
Prediction of Alcohol Use Disorder and PTSD After Trauma in Adolescents
青少年创伤后酒精使用障碍和创伤后应激障碍 (PTSD) 的预测
  • 批准号:
    10693806
  • 财政年份:
    2022
  • 资助金额:
    $ 23.88万
  • 项目类别:
1/3 Understanding PTSD through Postmortem Targeted Brain Multi-omics
1/3 通过死后靶向脑多组学了解 PTSD
  • 批准号:
    9815771
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
1/3 Understanding PTSD through Postmortem Targeted Brain Multi-omics
1/3 通过死后靶向脑多组学了解 PTSD
  • 批准号:
    9924647
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
1/3 Understanding PTSD through Postmortem Targeted Brain Multi-omics
1/3 通过死后靶向脑多组学了解 PTSD
  • 批准号:
    10159964
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
1/3 Understanding PTSD through Postmortem Targeted Brain Multi-omics
1/3 通过死后靶向脑多组学了解 PTSD
  • 批准号:
    10405109
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
Stem Cell Therapy, Inflammation and Treatment Response inAlcoholism-Depression Comorbidity
干细胞疗法、酒精中毒抑郁症合并症的炎症和治疗反应
  • 批准号:
    9380069
  • 财政年份:
    2017
  • 资助金额:
    $ 23.88万
  • 项目类别:
1 of 2 - Prospective Determination of Psychobiological Risk Factors for PTSD
1 of 2 - PTSD 心理生物学风险因素的前瞻性确定
  • 批准号:
    8290799
  • 财政年份:
    2012
  • 资助金额:
    $ 23.88万
  • 项目类别:
1 of 2 - Prospective Determination of Psychobiological Risk Factors for PTSD
1 of 2 - PTSD 心理生物学风险因素的前瞻性确定
  • 批准号:
    8470246
  • 财政年份:
    2012
  • 资助金额:
    $ 23.88万
  • 项目类别:
1 of 2 - Prospective Determination of Psychobiological Risk Factors for PTSD
1 of 2 - PTSD 心理生物学风险因素的前瞻性确定
  • 批准号:
    8659508
  • 财政年份:
    2012
  • 资助金额:
    $ 23.88万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了