Nuclear Nanomagnets for Quantum Optical Spin Devices
用于量子光学自旋器件的核纳米磁体
基本信息
- 批准号:EP/G004366/1
- 负责人:
- 金额:$ 97.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nuclear Nanomagnets for Quantum ComputingInformation technology today involves manipulating and transporting small collections of charges through a system of small wires and semiconductor transistors. Making faster and cheaper computers means making these components smaller - in fact their size is halving every two years, and soon we will reach the limit where transistors are the same size as the atoms themselves! Electrons can be thought of as being like a particle or like a wave, and it is the size of the electron wave that determines its behaviour in such small components. Quantum mechanics, the physics that describes such small systems, predicts that electrons in such small components will have totally different properties, and we will have to design our components in a completely new way.Understanding how to deal with the quantum behaviour of electrons presents us with the opportunity to make a new type of computer. Researchers have shown that a quantum computer is theoretically possible by making use of the purely quantum nature of electrons and light. These quantum computers are still in their very early stages, but one day they will perform calculations that will never be possible with conventional computers. My intended research will involve investigating a new type of architecture for a quantum computer. In a quantum computer, information must be stored and transmitted in a reliable way. I will show that it is possible to store information by putting a single electron into a quantum dot . This is a type of nanoscale semiconductor that can store a single electron, and prevent it from interacting or colliding with other electrons and losing its information. It turns out that the best way to store information in the electron is to encode it into its spin . Spin is the intrinsic magnet of an electron. We can change its direction from up to down , in the same way that bits in a computer have the value 0 or 1 .Electron spin is a very good way to store information in quantum dots, but in fact we cannot store the electron spin forever. The problem is that the electron sits inside a semiconductor, which consists of a lattice of atomic nuclei. Each of these nuclei also has its own intrinsic spin, which the electron feels. The magnetic field from each nucleus is very weak, but eventually the electron spin will change due to these nuclei. In my work, on the other hand, I am going to make use of the nuclei. Generally, the nuclear spins point in all directions, but it is also possible to use the electron to redirect all the nuclei to point in the same direction. There are about 10000 nuclei inside our quantum dot, so aligning them all means that the magnetic field felt by the electron is now very large. The nuclei now have a positive effect on the electron spin. Everything is aligned in the same direction and the electron spin may be stored for extremely long times.Solving the problem of how to store electron spins is no good, however, if we are not able to read out and transport its state to another electron spin to perform a calculation. Fortunately, electrons in quantum dots are able to absorb and emit light, and when they do this they also give the information about their spin to a single photon (a particle of light) which we are able to detect. The only problem is that waiting for the electron to produce a photon takes a long time. To make electrons absorb and emit photons faster, we put them into photonic structures that control how the photons interact with the electrons. In my work I will design photonic structures and techniques that are not only so effective that I will be able to either make a very strong nanomagnet, but also so sensitive that I will detect just a single nucleus. This work will help us to understand not only how to make quantum computers using semiconductors, but will tell us a great deal about how to make these basic interactions work in other systems as well.
今天的信息技术涉及通过一个由小导线和半导体晶体管组成的系统来操纵和传输少量的电荷。制造更快更便宜的计算机意味着使这些组件更小-事实上,它们的尺寸每两年减少一半,很快我们将达到晶体管与原子本身大小相同的极限!电子可以被认为是像一个粒子或像一个波,它是电子波的大小,决定了它的行为在这样的小组件。量子力学是描述如此小的系统的物理学,它预测在如此小的组件中的电子将具有完全不同的性质,我们将不得不以全新的方式设计我们的组件。了解如何处理电子的量子行为为我们提供了制造新型计算机的机会。研究人员已经证明,通过利用电子和光的纯量子性质,量子计算机在理论上是可能的。这些量子计算机仍处于非常早期的阶段,但总有一天它们将执行传统计算机永远无法实现的计算。我打算的研究将涉及研究一种新型的量子计算机架构。在量子计算机中,信息必须以可靠的方式存储和传输。我将证明通过将单个电子放入量子点来存储信息是可能的。这是一种纳米级半导体,可以存储单个电子,并防止它与其他电子相互作用或碰撞并丢失其信息。事实证明,在电子中存储信息的最佳方法是将其编码为自旋。自旋是电子的固有磁体。我们可以将其方向从上到下改变,就像计算机中的位具有0或1的值一样。电子自旋是量子点存储信息的一种非常好的方式,但实际上我们不能永远存储电子自旋。问题是电子位于半导体内部,半导体由原子核的晶格组成。这些原子核中的每一个都有自己的固有自旋,电子可以感觉到。每个原子核的磁场都很弱,但最终电子自旋会因为这些原子核而改变。另一方面,在我的工作中,我将利用原子核。一般来说,核自旋指向所有方向,但也可以使用电子将所有核重定向到同一方向。在我们的量子点内大约有10000个原子核,因此将它们排列在一起意味着电子感受到的磁场现在非常大。原子核现在对电子自旋有积极的影响。所有的东西都在同一个方向上排列,电子自旋可能会被存储很长时间。但是,如果我们不能读出它的状态并将其转移到另一个电子自旋来进行计算,那么解决如何存储电子自旋的问题就不好了。幸运的是,量子点中的电子能够吸收和发射光,当它们这样做时,它们也将关于它们的自旋的信息提供给我们能够检测到的单个光子(光粒子)。唯一的问题是等待电子产生光子需要很长时间。为了使电子更快地吸收和发射光子,我们将它们放入光子结构中,控制光子如何与电子相互作用。在我的工作中,我将设计光子结构和技术,不仅如此有效,我将能够制造一个非常强大的纳米磁体,而且如此敏感,我将检测到一个单一的原子核。这项工作不仅将帮助我们理解如何使用半导体制造量子计算机,还将告诉我们如何使这些基本相互作用在其他系统中也起作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimised photonic crystal waveguide for chiral light-matter interactions
- DOI:10.1088/2040-8986/aa5f5f
- 发表时间:2017-04-01
- 期刊:
- 影响因子:2.1
- 作者:Lang, Ben;Oulton, Ruth;Beggs, Daryl M.
- 通讯作者:Beggs, Daryl M.
Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation
- DOI:10.1063/1.4882180
- 发表时间:2014-06
- 期刊:
- 影响因子:4
- 作者:M. López-García;Y. Ho;M. Taverne;Lifeng Chen;M. M. Murshidy-M.;A. P. Edwards;M. Serry;A. Adawi;J. Rarity;R. Oulton
- 通讯作者:M. López-García;Y. Ho;M. Taverne;Lifeng Chen;M. M. Murshidy-M.;A. P. Edwards;M. Serry;A. Adawi;J. Rarity;R. Oulton
Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.
- DOI:10.1126/sciadv.aan8917
- 发表时间:2018-04
- 期刊:
- 影响因子:13.6
- 作者:Lopez-Garcia M;Masters N;O'Brien HE;Lennon J;Atkinson G;Cryan MJ;Oulton R;Whitney HM
- 通讯作者:Whitney HM
Optical control of the emission direction of a quantum dot
- DOI:10.1063/1.4845975
- 发表时间:2013-12-09
- 期刊:
- 影响因子:4
- 作者:Luxmoore, I. J.;Wasley, N. A.;Skolnick, M. S.
- 通讯作者:Skolnick, M. S.
Time reversal constraint limits unidirectional photon emission in slow-light photonic crystals
时间反转约束限制了慢光光子晶体中的单向光子发射
- DOI:10.48550/arxiv.1601.04591
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Lang B
- 通讯作者:Lang B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Oulton其他文献
Electrifying cavities
充电腔
- DOI:
10.1038/nnano.2014.41 - 发表时间:
2014-03-05 - 期刊:
- 影响因子:34.900
- 作者:
Ruth Oulton - 通讯作者:
Ruth Oulton
Ruth Oulton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Oulton', 18)}}的其他基金
FCDO-UKRI Senior Research Fellowship on Quantum Technologies
FCDO-UKRI 量子技术高级研究奖学金
- 批准号:
EP/Y033043/1 - 财政年份:2024
- 资助金额:
$ 97.15万 - 项目类别:
Research Grant
One-dimensional quantum emitters and photons for quantum technologies: 1D QED
用于量子技术的一维量子发射器和光子:1D QED
- 批准号:
EP/N003381/1 - 财政年份:2016
- 资助金额:
$ 97.15万 - 项目类别:
Fellowship
SPIN SPACE - Spatially encoded telecoms and quantum technologies using spin-enabled all-optical switching
SPIN SPACE - 使用自旋全光交换进行空间编码的电信和量子技术
- 批准号:
EP/M024156/1 - 财政年份:2015
- 资助金额:
$ 97.15万 - 项目类别:
Research Grant
相似海外基金
Emergence: from nanomagnets to quantum spin liquids
出现:从纳米磁体到量子自旋液体
- 批准号:
RGPIN-2022-05240 - 财政年份:2022
- 资助金额:
$ 97.15万 - 项目类别:
Discovery Grants Program - Individual
RUI: Clock Transitions, Coherence and Quantum Dynamics in Molecular Nanomagnets
RUI:分子纳米磁体中的时钟跃迁、相干性和量子动力学
- 批准号:
2207624 - 财政年份:2022
- 资助金额:
$ 97.15万 - 项目类别:
Continuing Grant
RII Track 4: Metrology and spectroscopy of individual nanomagnets dynamics using quantum sensor-based (NV- center) nano-magnetometry
RII 轨道 4:使用基于量子传感器(NV 中心)纳米磁力测量的单个纳米磁体动力学的计量学和光谱学
- 批准号:
2033210 - 财政年份:2021
- 资助金额:
$ 97.15万 - 项目类别:
Standard Grant
RUI: Forbidden Transitions and Quantum Dynamics in Molecular Nanomagnets
RUI:分子纳米磁体中的禁止跃迁和量子动力学
- 批准号:
1708692 - 财政年份:2017
- 资助金额:
$ 97.15万 - 项目类别:
Continuing Grant
Networks of coupled nanomagnets: towards magnetic quantum cellular automata
耦合纳米磁体网络:迈向磁性量子细胞自动机
- 批准号:
344047-2007 - 财政年份:2008
- 资助金额:
$ 97.15万 - 项目类别:
Postdoctoral Fellowships
Networks of coupled nanomagnets: towards magnetic quantum cellular automata
耦合纳米磁体网络:迈向磁性量子细胞自动机
- 批准号:
344047-2007 - 财政年份:2007
- 资助金额:
$ 97.15万 - 项目类别:
Postdoctoral Fellowships
CAREER: Macroscopic Quantum Phenomena in Nanomagnets and SQUIDs
职业:纳米磁体和 SQUID 中的宏观量子现象
- 批准号:
0449516 - 财政年份:2005
- 资助金额:
$ 97.15万 - 项目类别:
Continuing Grant
FRG: NIRT: Quantum Spin Dynamics in Molecular Nanomagnets
FRG:NIRT:分子纳米磁体中的量子自旋动力学
- 批准号:
0506946 - 财政年份:2005
- 资助金额:
$ 97.15万 - 项目类别:
Standard Grant
IMR: Development of a Transient Spectrometer for Education and Research into Quantum Coherence in Molecular Nanomagnets
IMR:开发用于分子纳米磁体量子相干性教育和研究的瞬态光谱仪
- 批准号:
0414809 - 财政年份:2004
- 资助金额:
$ 97.15万 - 项目类别:
Standard Grant
Nanomagnets with high molecular symmetry: ground state spin, anisotropy and macroscopic quantum tunneling
具有高分子对称性的纳米磁体:基态自旋、各向异性和宏观量子隧道
- 批准号:
5368291 - 财政年份:2002
- 资助金额:
$ 97.15万 - 项目类别:
Priority Programmes














{{item.name}}会员




