Co-Continuous Metal-Ceramic Interpenetrating Composites (IPCs) for Light Armour Applications
用于轻型装甲应用的共连续金属陶瓷互穿复合材料 (IPC)
基本信息
- 批准号:EP/G006059/1
- 负责人:
- 金额:$ 13.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light weight armour materials are becoming increasingly important due to the need for increased personnel protection and also the move towards light, faster, more fuel efficient vehicles. Current armour usually consists of a number of individual materials sandwiched together. This can lead to heavy sections that are complex to manufacture, replace or repair. Metal Matrix Composities (MMCs) have been shown to display improved strength, stiffness, hardness, wear and abrasion resistance, lower thermal expansion coefficients and better resistance to elevated temperatures and creep compared to the matrix metal, whilst retaining adequate electrical and thermal conductivity, ductility, impact and oxidation resistance and may be an ideal material for armour applications. Traditional approaches to making MMCs, result in materials with microstructures consisting of discrete particles, whiskers or fibres dispersed in an otherwise homogeneous matrix metal. These approaches yield problems with obtaining a high enough reinforcement phase content which limits potential applications as a result of the increased costs and, more importantly, the development of anisotropic properties.Recent work at Loughborough University under EPSRC grant GR/S15471 has demonstrated that it is possible to infiltrate ceramic foams with densities in the range 5-50% of theoretical with a range of aluminium-based molten metals to form interpenetrating composites (IPCs). The foams, developed by the same research team, have fully dense pore walls and struts, which provide high strength, whilst the pores are fully connected by windows making them suitable for a range of applications, including infiltration. The composites produced have both the ceramic and metal phases fully connected in all three dimensions, yielding a material that not only has isotropic properties but a true mix of the ceramic and metal properties. These properties can be modified by varying the composition, density and pore sizes of the foams, by varying the foam density across a section and infiltrating different metal alloys.Recent preliminary has shown that these IPCs have the potential to fulfil the need for an armour material. Not only have they been shown to have useful ballistic properties but are also lightweight and easy to manufacture in a range of shapes. Work is now needed to:-Scale up the processing of the composites to allow full sized test pieces to be manufactured. These will have a range of cell sizes and ceramic contents and will be infiltrated with two different aluminium alloys.-As many armour solutions are made up of a multi-layered system, this technology is ideal for adaptation to producing a fully integrated layered structure. By varying the ceramic preform density from fully dense to semi-solid followed by metal infiltration it will be possible to manufacture two layer (IPC-metal) and three layer (ceramic-IPC-metal) materials. This type of structure negates the need to glue separate materials together, improving the overall properties of the structure.-For full realisation of these materials for ballistic applications extensive testing is needed. In the first instance, laboratory based tests will be used to optimise the material properties followed by full scale ballistic testing by both ADML and Permali. Analysis of the material following testing will be carried out to determine the damage mechanism, area (spread) of damage and the influence of IPC makeup. Two and three layer armour solutions will be developed and tested.-Finally, as we near the point where we can exploit this material commercially, we need to develop a better understanding of end users requirements. Considerable interest is being shown by a number of companies in the area, as demonstrated by the support for this project, who will assist in realising the full potential of these materials. Work is needed fully to realise the use of IPCs which will be addressed in the final task.
由于需要加强人员保护,以及转向更轻、更快、更省油的车辆,轻型装甲材料正变得越来越重要。目前的装甲通常是由一些单独的材料夹在一起组成的。这可能会导致制造、更换或维修复杂的重型部件。与基体金属相比,金属基复合材料(MMC)表现出更高的强度、硬度、硬度、耐磨性、更低的热膨胀系数和更好的抗高温和蠕变能力,同时保持足够的导电性和热导性、延展性、抗冲击性和抗氧化性,可能是一种理想的装甲材料。传统的制造MMC的方法导致材料的微观结构由分散在均匀基质金属中的离散颗粒、晶须或纤维组成。这些方法在获得足够高的增强相含量方面产生了问题,这限制了潜在的应用,因为增加的成本,更重要的是各向异性性能的发展。拉夫堡大学最近在EPSRC补助金GR/S15471下的工作表明,可以用一系列铝基熔体金属渗透密度在理论值5%-50%范围内的泡沫陶瓷以形成互穿复合材料(IPC)。由同一研究团队开发的泡沫具有完全致密的孔壁和支柱,提供高强度,而孔完全由窗户连接,使其适合包括渗透在内的一系列应用。所生产的复合材料具有陶瓷和金属相在所有三个维度上的完全连接,从而产生不仅具有各向同性属性的材料,而且是陶瓷和金属属性的真正混合。这些性能可以通过改变泡沫的组成、密度和孔径,通过改变截面上的泡沫密度和渗透到不同的金属合金中来改变。最近的初步研究表明,这些IPC具有满足装甲材料需求的潜力。它们不仅被证明具有有用的弹道性能,而且重量轻,易于制造成各种形状。现在需要做的工作是:-扩大复合材料的加工,以允许制造完整尺寸的试件。它们将具有不同的单元尺寸和陶瓷含量,并将由两种不同的铝合金渗透。-由于许多装甲解决方案由多层系统组成,这项技术非常适合于生产完全集成的分层结构。通过改变陶瓷预制件的密度,从全致密到半固态,然后金属渗透,将有可能制备两层(IPC-金属)和三层(陶瓷-IPC-金属)材料。这种类型的结构不需要将分离的材料粘合在一起,从而改善了结构的整体性能。-为了充分实现这些材料用于弹道应用,需要进行广泛的测试。在第一种情况下,将使用基于实验室的测试来优化材料性能,然后由ADML和PerMali进行全面的弹道测试。随后将对材料进行分析,以确定损坏机理、损坏区域(扩散)和IPC组成的影响。将开发和测试两层和三层装甲解决方案。-最后,随着我们接近可以将这种材料商业化开发的地步,我们需要更好地了解终端用户的需求。该地区的一些公司表现出了相当大的兴趣,这一点从对该项目的支持中可见一斑,他们将帮助实现这些材料的全部潜力。需要做充分的工作才能实现使用IPC,这将在最后一项任务中解决。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique
- DOI:10.1016/j.wear.2009.07.014
- 发表时间:2010-01-04
- 期刊:
- 影响因子:5
- 作者:Chang, Hong;Binner, Jon;Higginson, Rebecca
- 通讯作者:Higginson, Rebecca
Mechanical Properties and Performance of Engineering Ceramics and Composites VI - Ceramic Engineering and Science Proceedings
工程陶瓷和复合材料的机械性能和性能 VI - 陶瓷工程与科学论文集
- DOI:10.1002/9781118095355.ch24
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Liu J
- 通讯作者:Liu J
Cutting resistance of metal-ceramic interpenetrating composites
- DOI:10.1016/j.ceramint.2016.11.124
- 发表时间:2017-02
- 期刊:
- 影响因子:5.2
- 作者:Jing Liu;Jinyu Wu;J. Binner
- 通讯作者:Jing Liu;Jinyu Wu;J. Binner
Interfacial reactions and wetting in Al-Mg/oxide ceramic interpenetrating composites made by a pressureless infiltration technique
- DOI:10.1016/j.compscitech.2012.02.018
- 发表时间:2012-05-02
- 期刊:
- 影响因子:9.1
- 作者:Liu, Jing;Sinner, Jon;Zhou, Zhaoxia
- 通讯作者:Zhou, Zhaoxia
Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration
- DOI:10.1016/j.wear.2011.12.008
- 发表时间:2012-02-15
- 期刊:
- 影响因子:5
- 作者:Liu, Jing;Binner, Jon;Higginson, Rebecca
- 通讯作者:Higginson, Rebecca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Binner其他文献
Complexing behaviors between ammonium polyacrylate and poly(diallyldimethylammonium chloride) polyelectrolytes
- DOI:
10.1016/j.polymer.2005.08.023 - 发表时间:
2005-11-14 - 期刊:
- 影响因子:
- 作者:
Yongheng Zhang;Jon Binner - 通讯作者:
Jon Binner
University of Birmingham Scale characterisation of an oxidised (Hf,Ti)C-SiC ultra-high temperature ceramic matrix composite
伯明翰大学氧化 (Hf,Ti)C-SiC 超高温陶瓷基复合材料的规模表征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Phylis Makurunje;I. Sigalas;Jon Binner - 通讯作者:
Jon Binner
A review on additive manufacturing of ceramic matrix composites
陶瓷基复合材料增材制造综述
- DOI:
10.1016/j.jmst.2022.06.039 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:14.300
- 作者:
Jinxing Sun;Daorong Ye;Ji Zou;Xiaoteng Chen;Yue Wang;Jinsi Yuan;Haowen Liang;Hongqiao Qu;Jon Binner;Jiaming Bai - 通讯作者:
Jiaming Bai
Processing multi-channel alumina membranes by tape casting latex-based suspensions
- DOI:
10.1016/j.ceramint.2005.06.005 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Yongheng Zhang;Chengwei Qin;Jon Binner - 通讯作者:
Jon Binner
Computational characterisation of microwave heating of fibre preforms for CVI of SiCsubf/sub/SiC composites
用于 SiCsubf/sub/SiC 复合材料化学气相渗透(CVI)的纤维预制件微波加热的计算表征
- DOI:
10.1016/j.jeurceramsoc.2022.12.035 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:6.200
- 作者:
Matthew T. Porter;Jon Binner;Michael K. Cinibulk;Kevin E. Stern;Vadim V. Yakovlev - 通讯作者:
Vadim V. Yakovlev
Jon Binner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Binner', 18)}}的其他基金
Material Systems for Extreme Environments
适用于极端环境的材料系统
- 批准号:
EP/K008749/2 - 财政年份:2014
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Material Systems for Extreme Environments
适用于极端环境的材料系统
- 批准号:
EP/K008749/1 - 财政年份:2013
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Small items of research equipment at Loughborough University
拉夫堡大学的小型研究设备
- 批准号:
EP/K03118X/1 - 财政年份:2012
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Manufacture of prototype nanostructured ceramic components
原型纳米结构陶瓷部件的制造
- 批准号:
EP/I500227/1 - 财政年份:2010
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Understanding and Improving Ceramic Armour Materials
了解和改进陶瓷铠装材料
- 批准号:
EP/G042675/1 - 财政年份:2009
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Processing of Nanostructured Ceramics
纳米结构陶瓷的加工
- 批准号:
EP/F008791/1 - 财政年份:2007
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Visit Of Prof John Booske To The UK Regarding The 'Microwave Effect'
约翰·布斯克教授访问英国探讨“微波效应”
- 批准号:
EP/D061539/1 - 财政年份:2006
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
相似海外基金
Symmetry-directed Epitaxy Growth of 2D Semiconducting Transition Metal Dichalcogenides with continuous single crystallinity and ultralow defect density
具有连续单晶度和超低缺陷密度的二维半导体过渡金属二硫属化物的对称定向外延生长
- 批准号:
23H00253 - 财政年份:2023
- 资助金额:
$ 13.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2022
- 资助金额:
$ 13.7万 - 项目类别:
Collaborative Research and Development Grants
SBIR Phase II: Large-Scale Synthesis of Hollow Metal Nanospheres: Conversion of Batch Synthesis to Continuous Flow
SBIR第二阶段:空心金属纳米球的大规模合成:间歇合成向连续流动的转化
- 批准号:
2127133 - 财政年份:2022
- 资助金额:
$ 13.7万 - 项目类别:
Cooperative Agreement
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2021
- 资助金额:
$ 13.7万 - 项目类别:
Collaborative Research and Development Grants
Smart MOFs: applications-based online analysis and optimisation for continuous production of metal organic frameworks
智能MOF:基于应用的在线分析和优化,用于金属有机框架的连续生产
- 批准号:
2454270 - 财政年份:2020
- 资助金额:
$ 13.7万 - 项目类别:
Studentship
Continuous synthesis of chiral molecules by cooperative systems using heterogeneous metal nanoparticles and organocatalysts
使用异质金属纳米颗粒和有机催化剂的协同系统连续合成手性分子
- 批准号:
20K15274 - 财政年份:2020
- 资助金额:
$ 13.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2020
- 资助金额:
$ 13.7万 - 项目类别:
Collaborative Research and Development Grants
Microfluidic approach toward continuous synthesis of metal organic framework (MOF) crystals
连续合成金属有机骨架(MOF)晶体的微流控方法
- 批准号:
2282152 - 财政年份:2019
- 资助金额:
$ 13.7万 - 项目类别:
Studentship
SBIR Phase I: Large Scale Synthesis of Hollow Metal Nanospheres: Conversion of Batch Synthesis to Continuous Flow
SBIR 第一阶段:空心金属纳米球的大规模合成:间歇合成向连续流动的转化
- 批准号:
1940608 - 财政年份:2019
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Innovative Low Melting Liquid Metal Model for Optimizing Argon Injection Practices during Steelmaking and Continuous Casting for Productivity and Quality Improvements
创新的低熔点液态金属模型,用于优化炼钢和连铸过程中的吹氩实践,以提高生产率和质量
- 批准号:
522412-2017 - 财政年份:2019
- 资助金额:
$ 13.7万 - 项目类别:
Collaborative Research and Development Grants