Processing of Nanostructured Ceramics

纳米结构陶瓷的加工

基本信息

  • 批准号:
    EP/F008791/1
  • 负责人:
  • 金额:
    $ 12.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The appeal of nanocrystalline ceramics arises from their potential to offer unusual physical and mechanical properties, which, depending on the material, can include superplasticity at elevated temperatures, optical transparency for normally opaque materials and a range of other electrical, optical and magnetic properties as well as potentially higher strengths, toughnesses and hardness.Although some commercial nanopowders are now produced in relatively large quantities, consolidation into dense nanostructured components by industrially-viable routes is needed to take full advantage of the potential offered. If this can be achieved there is the potential to use the materials for a very wide range of applications. Advanced ceramics are the active material in many electronics devices, fuel cells, magnets, sensors and biomaterials, as well as a very wide range of structural components. This means that they are used in almost every type of industry, including power generation, aerospace, transportation and military applications as well as in the manufacture of other materials. Such applications are vital to maintaining global competitiveness, decreasing energy consumption and minimising pollution. Their estimated world market was >$20B in 2000, with an annual growth rate of 7.2%. Of this, the electronics sector was ~65% of the market, the rest falling into the chemical processing, coatings and advanced structural mechanics sectors.The primary objective of this research proposal is to develop a number of recent developments at Loughborough Univ. that have been achieved under previous EPSRC grants. Specifically:* Whilst it is now possible to slip cast very homogeneous and high density compacts from nanosuspensions, there is currently a major problem with drying those made from high solids content suspensions (which yield the best bodies) - it can take several days even using a humidity drier. The structure of these bodies need understanding as a function of the processing conditions used, particularly the solids content of the suspension. This then gives us a chance to control the situation and perhaps improve it so that drying times can be much faster without sacrificing the properties of the body.* Similarly, it is now possible to dry press homogeneous and high density compacts from powders that have been formed by spray-freeze drying the nanosuspensions (the same process used to make instant coffee granules). Once again, however, the high solids content suspensions (which yield the highest densities) provide problems, this time with hard agglomerates that don't crush. Very similar work needs performing as above to allow us to understand why this is happening and what can be done about it.* Both types of compact need firing in furnaces to produce fully dense ceramics whilst retaining an extremely fine, sub 100 nm, average grain size. Whilst this can now also be done using a novel pressureless (and hence low cost) process, the understanding of how this process works is still not perfect and we also need to scale up to make larger components.* Finally, as we near the point where we can exploit these developments commercially, we really need to develop a better understanding of industry's requirements. Just how close are we to developing process routes that they can use on their factory floors? Which ceramic systems are they most interested in? Which companies are really ready to embrace the new 'nanotechnology' and which are keen to sit on the sidelines for a bit longer yet. These issues, and others, will all be addressed in the final task of the programme.
纳米晶陶瓷的吸引力来自于它们提供不寻常的物理和机械性能的潜力,根据材料的不同,这些性能可以包括高温下的超塑性,通常不透明材料的光学透明性和一系列其他电,光学和磁性特性,以及潜在的更高强度,韧性和硬度。虽然现在一些商业纳米粉末的生产量相对较大,需要通过工业上可行的途径固结成致密的纳米结构部件,以充分利用所提供的潜力。如果能够实现这一点,就有可能将这些材料用于非常广泛的应用。先进陶瓷是许多电子设备、燃料电池、磁铁、传感器和生物材料以及各种结构部件中的活性材料。这意味着它们几乎用于所有类型的行业,包括发电,航空航天,运输和军事应用以及其他材料的制造。这些应用对于保持全球竞争力、降低能源消耗和减少污染至关重要。据估计,2000年全球市场规模超过200亿美元,年增长率为7.2%。其中,电子行业约占65%的市场份额,其余属于化学加工,涂料和先进的结构力学领域。这项研究计划的主要目标是开发拉夫堡大学的一些最新发展。这些发展是在以前的EPSRC赠款下实现的。具体而言:* 虽然现在可以从纳米悬浮液中粉浆浇铸非常均匀和高密度的压坯,但目前干燥由高固体含量悬浮液制成的压坯(产生最好的坯体)存在一个主要问题-即使使用湿度干燥器也可能需要几天时间。这些物体的结构需要理解为所使用的加工条件的函数,特别是悬浮液的固体含量。这就给了我们一个机会来控制这种情况,也许可以改善它,这样干燥时间就可以更快,而不会牺牲身体的特性。类似地,现在可以从已经通过喷雾冷冻干燥纳米悬浮液(用于制造速溶咖啡颗粒的相同过程)形成的粉末干压均匀且高密度的压块。然而,高固体含量悬浮液(其产生最高密度)再次提供问题,这次是不压碎的硬附聚物。需要执行与上述非常相似的工作,以便我们理解为什么会发生这种情况以及可以对此做些什么。这两种类型的压坯都需要在炉中烧制以生产完全致密的陶瓷,同时保持极细的平均晶粒尺寸,低于100 nm。虽然现在也可以使用一种新的无压(因此成本低)工艺来完成,但对该工艺如何工作的理解仍然不完美,我们还需要扩大规模以制造更大的组件。最后,当我们接近我们可以商业化利用这些发展的时候,我们真的需要更好地了解行业的需求。我们离开发出他们可以在工厂车间使用的工艺路线还有多远?他们对哪种陶瓷系统最感兴趣?哪些公司真的准备好接受新的“纳米技术”,哪些公司热衷于在场边坐得更久。这些问题和其他问题都将在方案的最后一项任务中加以处理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials III
结构与多功能材料先进加工与制造技术III
  • DOI:
    10.1002/9780470584392.ch2
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vaidhyanathan B
  • 通讯作者:
    Vaidhyanathan B
Microwave assisted large scale sintering of multilayer electroceramic devices
微波辅助多层电陶瓷器件的大规模烧结
Manufacture of nanostructured ceramics
纳米结构陶瓷的制造
3D printing of zirconia via digital light processing: optimization of slurry and debinding process
  • DOI:
    10.1016/j.jeurceramsoc.2020.05.079
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Sun, Jinxing;Binner, Jon;Bai, Jiaming
  • 通讯作者:
    Bai, Jiaming
Dispersion and Rheology of Aqueous Suspensions of Nanosized BaTiO 3
纳米BaTiO 3 水悬浮液的分散和流变学
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Binner其他文献

Complexing behaviors between ammonium polyacrylate and poly(diallyldimethylammonium chloride) polyelectrolytes
  • DOI:
    10.1016/j.polymer.2005.08.023
  • 发表时间:
    2005-11-14
  • 期刊:
  • 影响因子:
  • 作者:
    Yongheng Zhang;Jon Binner
  • 通讯作者:
    Jon Binner
University of Birmingham Scale characterisation of an oxidised (Hf,Ti)C-SiC ultra-high temperature ceramic matrix composite
伯明翰大学氧化 (Hf,Ti)C-SiC 超高温陶瓷基复合材料的规模表征
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Phylis Makurunje;I. Sigalas;Jon Binner
  • 通讯作者:
    Jon Binner
A review on additive manufacturing of ceramic matrix composites
陶瓷基复合材料增材制造综述
  • DOI:
    10.1016/j.jmst.2022.06.039
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Jinxing Sun;Daorong Ye;Ji Zou;Xiaoteng Chen;Yue Wang;Jinsi Yuan;Haowen Liang;Hongqiao Qu;Jon Binner;Jiaming Bai
  • 通讯作者:
    Jiaming Bai
Processing multi-channel alumina membranes by tape casting latex-based suspensions
  • DOI:
    10.1016/j.ceramint.2005.06.005
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yongheng Zhang;Chengwei Qin;Jon Binner
  • 通讯作者:
    Jon Binner
Computational characterisation of microwave heating of fibre preforms for CVI of SiCsubf/sub/SiC composites
用于 SiCsubf/sub/SiC 复合材料化学气相渗透(CVI)的纤维预制件微波加热的计算表征
  • DOI:
    10.1016/j.jeurceramsoc.2022.12.035
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Matthew T. Porter;Jon Binner;Michael K. Cinibulk;Kevin E. Stern;Vadim V. Yakovlev
  • 通讯作者:
    Vadim V. Yakovlev

Jon Binner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Binner', 18)}}的其他基金

Material Systems for Extreme Environments
适用于极端环境的材料系统
  • 批准号:
    EP/K008749/2
  • 财政年份:
    2014
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Material Systems for Extreme Environments
适用于极端环境的材料系统
  • 批准号:
    EP/K008749/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Small items of research equipment at Loughborough University
拉夫堡大学的小型研究设备
  • 批准号:
    EP/K03118X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Manufacture of prototype nanostructured ceramic components
原型纳米结构陶瓷部件的制造
  • 批准号:
    EP/I500227/1
  • 财政年份:
    2010
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Understanding and Improving Ceramic Armour Materials
了解和改进陶瓷铠装材料
  • 批准号:
    EP/G042675/1
  • 财政年份:
    2009
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Co-Continuous Metal-Ceramic Interpenetrating Composites (IPCs) for Light Armour Applications
用于轻型装甲应用的共连续金属陶瓷互穿复合材料 (IPC)
  • 批准号:
    EP/G006059/1
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Visit Of Prof John Booske To The UK Regarding The 'Microwave Effect'
约翰·布斯克教授访问英国探讨“微波效应”
  • 批准号:
    EP/D061539/1
  • 财政年份:
    2006
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant

相似海外基金

SBIR Phase I: Nanostructured Ceramics Membranes for Redox Flow Batteries with Superior Performance and Low Cost
SBIR第一阶段:用于氧化还原液流电池的纳米结构陶瓷膜,具有卓越的性能和低成本
  • 批准号:
    1648517
  • 财政年份:
    2016
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
Syntheses and applications of low-dimensional nanostructured ceramics thin film/metal composites
低维纳米结构陶瓷薄膜/金属复合材料的合成及应用
  • 批准号:
    25420732
  • 财政年份:
    2013
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Radiation Interaction with Nanostructured Ceramics - Integrating Materials Research Into Nuclear Education
职业:辐射与纳米结构陶瓷的相互作用 - 将材料研究融入核教育
  • 批准号:
    1151028
  • 财政年份:
    2012
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Continuing Grant
CAREER: Scaled-Up Manufacturing of Nanostructured Refractory Ceramics for High-Temperature Applications
职业:高温应用纳米结构耐火陶瓷的规模化制造
  • 批准号:
    0913373
  • 财政年份:
    2009
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Making Nanostructured Ceramics from Micrometer-Sized Starting Powders
合作研究:用微米级起始粉末制造纳米结构陶瓷
  • 批准号:
    0800086
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Making Nanostructured Ceramics from Micrometer-Sized Starting Powders
合作研究:用微米级起始粉末制造纳米结构陶瓷
  • 批准号:
    0800018
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
Nanostructured Advanced Ceramics (NASTRAC)
纳米结构先进陶瓷 (NASTRAC)
  • 批准号:
    TS/G000891/1
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Research Grant
Nanostructured Advanced Ceramics (NASTRAC)
纳米结构先进陶瓷 (NASTRAC)
  • 批准号:
    100536
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Collaborative R&D
NER: Catalytic formation of nanostructured ceramics by a bio-mimetic and environmentally friendly approach
NER:通过仿生和环保方法催化形成纳米结构陶瓷
  • 批准号:
    0919033
  • 财政年份:
    2008
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
CAREER: Scaled-Up Manufacturing of Nanostructured Refractory Ceramics for High-Temperature Applications
职业:高温应用纳米结构耐火陶瓷的规模化制造
  • 批准号:
    0645225
  • 财政年份:
    2007
  • 资助金额:
    $ 12.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了