Computational Methods for Functional Genomic Discovery from Gene Knockout Studies
基因敲除研究中功能基因组发现的计算方法
基本信息
- 批准号:7475489
- 负责人:
- 金额:$ 15.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-04 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimalsAreaBiologicalBiological ModelsBiology of AgingBiomedical ResearchCell CycleCollectionCommunitiesComplexComputational TechniqueComputing MethodologiesCongenital AbnormalityDataData SetDatabasesDevelopmental BiologyDiagnosticDiseaseElementsEmbryoEmbryonic HeartEvaluationFolateGame TheoryGene ExpressionGene ProteinsGenerationsGenesGeneticGenetic ProgrammingGenomicsGoalsHealthHereditary DiseaseInstitutesInterventionInvestigationKnock-outKnockout MiceKnowledgeLeadLearningLiteratureMedicalMedicineMessenger RNAMethodologyMethodsMetricModelingMolecularMolecular TargetMusNamesOntologyPathogenesisPathway interactionsPattern RecognitionPhaseProbabilityProtein AnalysisProteinsProteomicsPublic HealthPublishingReceptor SignalingRecurrenceRegulationResearchResearch PersonnelResourcesSignal PathwaySignal TransductionSoftware ToolsSourceStatistical MethodsStructureSystemTestingTexasTimeTissuesTodayTrainingValidationbasebiological researchcomparativecomputer based statistical methodscomputerized toolsconceptdata modelingdesigndrug developmentembryonic stem cellfolate-binding proteinfunctional genomicsgene discoverygene interactionimprovedinnovationknockout animalknockout genemanmathematical modelmouse genomenull mutationprotein expressionprototyperesearch studyresponsesoundstemtool
项目摘要
DESCRIPTION (provided by applicant): The overall Phase I objective is to prototype a new computational tool to assess the feasibility of identifying and predicting gene functional and interactive relationships from gene expression data obtained from multi- comparative gene knockout studies. NIH's Knockout Mouse Project is an initiative to generate a public resource of mouse embryonic stem (ES) cells containing a null mutation in every gene in the mouse genome, important for the study of diseases and for deciphering the complexity of biological systems of mice and ultimately in man. It is anticipated that a new generation of comparative knockout studies with a biological will emerge in all areas of biomedical research. Having new computational methods for identifying and deciphering genetically regulated response (e.g. signaling cascades) will significantly aid in advancing our understanding of the molecular targets and mechanisms of many diseases and will be extremely important for making medical breakthroughs, especially for the safe and effective development of drugs and diagnostics. Today, researchers are hindered by the tremendous volumes of data generated from knockout investigations. Seralogix plans to build upon the capabilities of our existing Biosystem Analysis Framework (BAF) that is comprised of a suite of integrated analysis and mathematical modeling tools for gene and protein analysis. Our core tools are based on the statistical power of Dynamic Bayesian Networks (DBNs) that is built on sound statistical methods that allow us to combine prior knowledge with empirical time-course data for modeling, pattern recognition and genetic network inference. Our innovation, proposed herein, is to integrate the }multi- perturbation Shapley Value Analysis (MSA) method with our DBNs for improved genetic network discovery. MSA is based on concepts from game theory that we will utilized to identify the relationships/importance of each element (genes) in a system with respect to all other elements. We hypothesize that MSA integrated with our DBN inference engine in conjunction with time-course gene expression data from multiple gene KO experiments will result in improved genetic interactive discovery leading to a more robust mathematical/functional model system. If successful, the inclusion of MSA into Seralogix's suite of analysis and modeling tools will provide an important new tool for genetic functional and interactive relationship discovery. Seralogix believes that such a new tool will have significant commercial potential and will make a major contribution to the scientific community at large. The Phase I goals for our proposed tool will be to: 1) design and implement our DBN/MSA multi-conditional KO comparative methodology for discovery of underlying genetic networks; and 2) demonstrate proof-of-feasibility of the DBN/MSA methodology on mice gene KO expression data for folate receptor and related signaling pathways provided to us from the Texas Institute of Genomic Medicine (TIGM) as part of their ongoing birth defect research. It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that control health and disease, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. Having new computational methods (software tools) for identifying and deciphering genetically regulated response (e.g. signaling cascades) will significantly aid in advancing our understanding of the molecular targets and mechanisms of many diseases of high public health concern. The discovery of underlying genetic function and relationships will be extremely important for making medical breakthroughs, especially for the safe and effective development of drugs and diagnostics. Today, researchers are hindered by the tremendous volumes of gene/protein expression data generated from knockout investigations. Computational tools that transform these volumes of raw genomic/proteomic data to actionable knowledge via mathematical modeling will help guide and accelerate researchers' investigations of genetic disorder and identifying targets of intervention and treatment.
描述(由申请人提供):总体I期目标是建立一种新的计算工具原型,以评估从多比较基因敲除研究获得的基因表达数据中鉴定和预测基因功能和相互作用关系的可行性。NIH的基因敲除小鼠项目是一项旨在产生小鼠胚胎干细胞(ES)的公共资源的倡议,这些细胞在小鼠基因组中的每个基因中都含有无效突变,对于疾病的研究和破译小鼠以及最终人类生物系统的复杂性非常重要。预计新一代的比较基因敲除研究将出现在生物医学研究的所有领域。拥有新的计算方法来识别和破译遗传调节反应(例如信号级联)将大大有助于促进我们对许多疾病的分子靶点和机制的理解,并且对于医学突破,特别是对于药物和诊断的安全和有效开发非常重要。今天,研究人员受到敲除研究产生的大量数据的阻碍。Seralogix计划建立在我们现有的生物系统分析框架(BAF)的基础上,该框架由一套用于基因和蛋白质分析的集成分析和数学建模工具组成。我们的核心工具基于动态贝叶斯网络(DBN)的统计能力,该网络建立在健全的统计方法之上,使我们能够将先验知识与经验时程数据相结合,用于建模、模式识别和遗传网络推理。本文提出的我们的创新是将多扰动Shapley值分析(MSA)方法与我们的DBN集成以用于改进的遗传网络发现。MSA基于博弈论的概念,我们将利用这些概念来确定系统中每个元素(基因)相对于所有其他元素的关系/重要性。我们假设MSA与我们的DBN推理引擎结合多个基因KO实验的时程基因表达数据集成将导致改进的遗传交互式发现,从而产生更强大的数学/功能模型系统。如果成功的话,将MSA纳入Seralogix的分析和建模工具套件将为遗传功能和相互作用关系的发现提供一个重要的新工具。Seralogix认为,这种新工具将具有巨大的商业潜力,并将为整个科学界做出重大贡献。我们提出的工具的第一阶段目标是:1)设计和实施我们的DBN/MSA多条件KO比较方法,用于发现潜在的遗传网络;和2)证明DBN/MSA方法对叶酸受体和相关信号通路的小鼠基因KO表达数据的可行性证明,所述数据由德克萨斯基因组医学研究所(TIGM)提供给我们作为他们正在进行的出生缺陷研究的一部分。现代生物学研究的最终目标之一是充分阐明控制健康和疾病的分子决定因素的复杂相互作用和调节,仅举几例,细胞周期,发育生物学,衰老以及复杂疾病的进行性和复发性发病机制。拥有新的计算方法(软件工具)来识别和破译基因调控的反应(例如信号级联)将大大有助于促进我们对许多高度公共卫生关注的疾病的分子靶点和机制的理解。发现潜在的遗传功能和关系对于取得医学突破,特别是对于药物和诊断的安全有效开发至关重要。今天,研究人员受到敲除研究产生的大量基因/蛋白质表达数据的阻碍。通过数学建模将这些原始基因组/蛋白质组数据转化为可操作知识的计算工具将有助于指导和加速研究人员对遗传疾病的调查,并确定干预和治疗的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Drake其他文献
Kenneth L Drake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Drake', 18)}}的其他基金
Request for Supplemental Funds for I-Corps Participation
申请 I-Corps 参与补充资金
- 批准号:
9247625 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Service and Software Solution for the Rigorous Design of Animal Studies
用于动物研究严格设计的服务和软件解决方案
- 批准号:
9120568 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Host-Pathogen Interaction Network Learning from In Vivo Gene Co-Expression
宿主-病原体相互作用网络从体内基因共表达中学习
- 批准号:
7744949 - 财政年份:2009
- 资助金额:
$ 15.85万 - 项目类别:
Computational Methods for Functional Genomic Discovery from Gene Knockout Studies
基因敲除研究中功能基因组发现的计算方法
- 批准号:
7999392 - 财政年份:2008
- 资助金额:
$ 15.85万 - 项目类别:
Computational Methods for Functional Genomic Discovery from Gene Knockout Studies
基因敲除研究中功能基因组发现的计算方法
- 批准号:
8151188 - 财政年份:2008
- 资助金额:
$ 15.85万 - 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
- 批准号:
6736146 - 财政年份:2004
- 资助金额:
$ 15.85万 - 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
- 批准号:
7365218 - 财政年份:2004
- 资助金额:
$ 15.85万 - 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
- 批准号:
7269106 - 财政年份:2004
- 资助金额:
$ 15.85万 - 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
- 批准号:
6876114 - 财政年份:2004
- 资助金额:
$ 15.85万 - 项目类别:
Bioinformatics for Immune Response Biosignature Analyses
用于免疫反应生物特征分析的生物信息学
- 批准号:
6881710 - 财政年份:2003
- 资助金额:
$ 15.85万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 15.85万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 15.85万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 15.85万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 15.85万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Projects














{{item.name}}会员




