Computational Methods for Functional Genomic Discovery from Gene Knockout Studies

基因敲除研究中功能基因组发现的计算方法

基本信息

  • 批准号:
    8151188
  • 负责人:
  • 金额:
    $ 59.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-04 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall Phase II objective is to continue the development/validation of new system biology computational tools for inferencing gene regulatory relationships from gene expression data obtained from multi-perturbation gene knockout experiments. NIH's Knockout Mouse Project (KOMP) is an initiative to generate a public resource of mouse embryonic stem (ES) cells containing a null mutation in every gene in the mouse genome - important for deciphering the complexity of biological systems of mice and ultimately man. It is anticipated that a new generation of multi-perturbation/KO studies with a biological system perspective will emerge in all areas of biomedical research. New computational tools for deciphering genetically regulated responses (genotype-to- phenotype signaling cascades) will significantly aid in advancing our understanding of the molecular targets and mechanisms of many diseases. Today, researchers need new tools to deal with and decipher the tremendous volumes of gene/protein expression data generated from multi-perturbation investigations. Seralogix's Phase II efforts focus on improving and creating new functionality for learning larger scale (biological system level) gene regulatory networks and integrating this network learning functionality into our existing Biosystem Analysis Framework (BAF). Our BAF is comprised of a suite of integrated mathematical analysis and modeling tools and databases. The BAF core tools are based on Dynamic Bayesian Networks (DBNs). DBNs allow us to systematically integrate prior knowledge with empirical time-course expression data for modeling, pattern recognition and eventually biological system genetic network learning as proposed herein. Our algorithmic innovation, proven feasible in Phase I, is the incorporation of biological prior knowledge and multi-perturbation data with our DBNs for enabling a genetic network learning approach. This approach is based on well established Bayesian statistical methods that we adopt in a sampling scheme enhanced with biological prior knowledge to overcome the intrinsic difficulty of structure learning from sparse and noisy gene expression data. We show in Phase I that prior-knowledge, coupled with Bayesian network learning methods and multi-perturbation/KO experimental data, resulted in reliable gene regulatory relationship identification. We believe this approach can be scaled up, leading to a more robust mathematical/functional system level model. Further, we believe that integrating genetic network learning into Seralogix's BAF will provide an important new tool for identifying novel gene regulatory relations and insights into disease processes and have significant commercial potential for Seralogix. We will be collaborating with the Texas Institute of Genomic Medicine as a provider of mouse gene expression KO data who are studying the genomic causes of birth defects. Our Phase II aims include: 1) scaling our approach to support biological system level network learning; 2) statistical assessment and biological validation of our learned networks; 3) developing new tools/techniques to interrogate the resulting system network models so biologist can extract important knowledge. PUBLIC HEALTH RELEVANCE: It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that control health and disease, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. Having new computational methods (software tools) for identifying and deciphering genetically regulated response (e.g. signaling cascades) will significantly aid in advancing our understanding of the molecular targets and mechanisms of many diseases of high public health concern. The discovery of underlying genetic function and relationships will be extremely important for making medical breakthroughs, especially for the safe and effective development of drugs and diagnostics. Today, researchers are hindered by the tremendous volumes of gene/protein expression data generated from knockout investigations. Computational tools that transform these volumes of raw genomic/proteomic data to actionable knowledge via mathematical modeling will help guide and accelerate researchers' investigations of genetic disorder and identifying targets of intervention and treatment.
描述(由申请方提供):总体II期目标是继续开发/验证新的系统生物学计算工具,用于从多扰动基因敲除实验获得的基因表达数据中推断基因调控关系。NIH的敲除小鼠项目(KOMP)是一项旨在产生小鼠胚胎干(ES)细胞的公共资源的倡议,这些细胞在小鼠基因组中的每个基因中都含有无效突变-这对于破译小鼠和最终人类生物系统的复杂性至关重要。预计新一代具有生物系统视角的多扰动/KO研究将出现在生物医学研究的所有领域。用于破译遗传调节反应(基因型到表型信号级联)的新计算工具将大大有助于推进我们对许多疾病的分子靶点和机制的理解。今天,研究人员需要新的工具来处理和破译从多扰动研究中产生的大量基因/蛋白质表达数据。Seralogix的第二阶段工作重点是改进和创建用于学习更大规模(生物系统水平)基因调控网络的新功能,并将此网络学习功能集成到我们现有的生物系统分析框架(BAF)中。我们的BAF由一套集成的数学分析和建模工具和数据库组成。BAF核心工具基于动态贝叶斯网络(DBN)。DBN使我们能够系统地整合先验知识与经验时程表达数据,用于建模,模式识别和最终生物系统遗传网络学习,如本文所提出的。我们的算法创新,在第一阶段被证明是可行的,是生物先验知识和多扰动数据与我们的DBN的结合,使遗传网络学习方法。这种方法是基于完善的贝叶斯统计方法,我们采用的采样方案与生物先验知识增强,以克服固有的困难,从稀疏和嘈杂的基因表达数据的结构学习。我们在第一阶段表明,先验知识加上贝叶斯网络学习方法和多扰动/KO实验数据,可以实现可靠的基因调控关系识别。我们相信,这种方法可以扩大规模,导致一个更强大的数学/功能系统级模型。此外,我们相信,将遗传网络学习整合到Seralogix的BAF中将为识别新的基因调控关系和洞察疾病过程提供重要的新工具,并为Seralogix提供重要的商业潜力。我们将与德克萨斯州基因组医学研究所合作,作为小鼠基因表达KO数据的提供者,他们正在研究出生缺陷的基因组原因。我们的第二阶段目标包括:1)扩展我们的方法以支持生物系统级网络学习; 2)对我们学习的网络进行统计评估和生物验证; 3)开发新的工具/技术来询问产生的系统网络模型,以便生物学家可以提取重要的知识。 公共卫生关系:现代生物学研究的最终目标之一是充分阐明控制健康和疾病的分子决定因素的复杂相互作用和调节,仅举几例,细胞周期,发育生物学,衰老以及复杂疾病的进行性和复发性发病机制。拥有新的计算方法(软件工具)来识别和破译基因调控的反应(例如信号级联)将大大有助于促进我们对许多高度公共卫生关注的疾病的分子靶点和机制的理解。发现潜在的遗传功能和关系对于取得医学突破,特别是对于药物和诊断的安全有效开发至关重要。今天,研究人员受到敲除研究产生的大量基因/蛋白质表达数据的阻碍。通过数学建模将这些原始基因组/蛋白质组数据转化为可操作知识的计算工具将有助于指导和加速研究人员对遗传疾病的调查,并确定干预和治疗的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth L Drake其他文献

Kenneth L Drake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth L Drake', 18)}}的其他基金

Request for Supplemental Funds for I-Corps Participation
申请 I-Corps 参与补充资金
  • 批准号:
    9247625
  • 财政年份:
    2016
  • 资助金额:
    $ 59.67万
  • 项目类别:
Service and Software Solution for the Rigorous Design of Animal Studies
用于动物研究严格设计的服务和软件解决方案
  • 批准号:
    9120568
  • 财政年份:
    2016
  • 资助金额:
    $ 59.67万
  • 项目类别:
Host-Pathogen Interaction Network Learning from In Vivo Gene Co-Expression
宿主-病原体相互作用网络从体内基因共表达中学习
  • 批准号:
    7744949
  • 财政年份:
    2009
  • 资助金额:
    $ 59.67万
  • 项目类别:
Computational Methods for Functional Genomic Discovery from Gene Knockout Studies
基因敲除研究中功能基因组发现的计算方法
  • 批准号:
    7999392
  • 财政年份:
    2008
  • 资助金额:
    $ 59.67万
  • 项目类别:
Computational Methods for Functional Genomic Discovery from Gene Knockout Studies
基因敲除研究中功能基因组发现的计算方法
  • 批准号:
    7475489
  • 财政年份:
    2008
  • 资助金额:
    $ 59.67万
  • 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
  • 批准号:
    6736146
  • 财政年份:
    2004
  • 资助金额:
    $ 59.67万
  • 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
  • 批准号:
    7365218
  • 财政年份:
    2004
  • 资助金额:
    $ 59.67万
  • 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
  • 批准号:
    7269106
  • 财政年份:
    2004
  • 资助金额:
    $ 59.67万
  • 项目类别:
BWA Host-Pathogen Innate Immune S/W Analysis Tools
BWA 宿主病原体先天免疫软件分析工具
  • 批准号:
    6876114
  • 财政年份:
    2004
  • 资助金额:
    $ 59.67万
  • 项目类别:
Bioinformatics for Immune Response Biosignature Analyses
用于免疫反应生物特征分析的生物信息学
  • 批准号:
    6881710
  • 财政年份:
    2003
  • 资助金额:
    $ 59.67万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 59.67万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 59.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了