ENGINEERING
工程
基本信息
- 批准号:7724772
- 负责人:
- 金额:$ 78.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-22 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcysteineAlgorithmsClinical ResearchCollaborationsComputer Retrieval of Information on Scientific Projects DatabaseComputer softwareDetectionDevelopmentEngineeringFoundationsFunctional Magnetic Resonance ImagingFundingGrantInstitutionLinkMathematicsProductivityPurposeRecording of previous eventsResearchResearch PersonnelResourcesScienceSourceSystemTechnologyTimeUnited States National Institutes of HealthWorkabstractingcomputer scienceconceptfile formatinteroperabilityoutreachwhite matter
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The purpose of the Engineering Core is to provide a workable and efficient platform to
integrate NAC technology into a usable software application in support of our
collaborations and outreach activities. This platform provides an essential link between
the abstract world of applied mathematics and computer science, where a proof of
concept can serve as a powerful research result, and the applied biomedical sciences
where robust and usable systems are needed to drive the analysis of multiple subjects in a variety of clinical research scenarios. In particular, the Engineering Core is focused on such issues as interoperability between algorithms developed by the various cores of the NAC so that, for example, an R01 that results from an fMRI activation detection analysis can be used as the seeding points for DTI tractography to identify the white matter connections that may associate the activated R01 with other cortical and subcortical regions. By providing a common platform for research by the multiple cores, the potential value and applicability of each core is multiplied.
Beyond functionality, the common platform gives users a common set of interface
conventions, file formats, and related application-level support to enhance their
productivity. Through the history of the NAC enterprise, our efforts have evolved
increasingly towards the 3D Slicer platform as our mechanism for linking the basic
computational research with the biomedical applications. 3D Slicer also acts as the
conduit for delivering this work to the outside world as part of our outreach activities.
This effort has, in fact, been so successful that 3D Slicer has in some sense "graduated" from the NAC to become an important part of several large NIH sponsored efforts including the NA-MIC, BIRN, and NCIGT efforts. This gratifying development increases the scope of the development activities beyond what NAC alone could provide and at the same time strengthens the foundations of the software.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
工程核心的目的是提供一个可行和有效的平台,
将NAC技术集成到可用软件应用程序中,
协作和外联活动。这个平台提供了一个重要的联系,
在应用数学和计算机科学的抽象世界中,
概念可以作为一个强大的研究成果,应用生物医学科学
其中需要强大且可用的系统来驱动对各种临床研究场景中的多个受试者的分析。特别是,工程核心集中在这样的问题,如由NAC的各种核心开发的算法之间的互操作性,以便,例如,从功能磁共振成像激活检测分析结果的R 01可以被用作DTI纤维束成像的播种点,以识别白色物质连接,可能与其他皮层和皮层下区域激活的R 01。通过为多个核心的研究提供一个共同的平台,每个核心的潜在价值和适用性成倍增加。
除了功能之外,通用平台还为用户提供了一组通用的界面
约定、文件格式和相关的应用程序级支持,
生产力通过南汽企业的历史,我们的努力不断发展
我们越来越倾向于将3D Slicer平台作为我们连接基本
计算研究与生物医学应用。3D Slicer还充当
作为我们对外宣传活动的一部分,我们还将作为一个渠道向外部世界提供这项工作。
事实上,这一努力非常成功,3D Slicer在某种意义上已经从NAC“毕业”,成为NIH赞助的几个大型项目的重要组成部分,包括NA-MIC、BIRN和NCIGT项目。这一令人满意的发展扩大了开发活动的范围,超出了NAC单独能够提供的范围,同时加强了软件的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN PIEPER其他文献
STEVEN PIEPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN PIEPER', 18)}}的其他基金
SPL ENGINEERING CORE (FORMERLY THE BIRN SUBPROJECT)
SPL 工程核心(以前的 BIRN 子项目)
- 批准号:
7358984 - 财政年份:2006
- 资助金额:
$ 78.73万 - 项目类别:
SPL ENGINEERING CORE (FORMERLY THE BIRN SUBPROJECT)
SPL 工程核心(以前的 BIRN 子项目)
- 批准号:
7182663 - 财政年份:2005
- 资助金额:
$ 78.73万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 78.73万 - 项目类别:
Research Grant














{{item.name}}会员




