ENGINEERING

工程

基本信息

  • 批准号:
    7602394
  • 负责人:
  • 金额:
    $ 57.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The purpose of the Engineering Core is to provide a workable and efficient platform to integrate NAC technology into a usable software application in support of our collaborations and outreach activities. This platform provides an essential link between the abstract world of applied mathematics and computer science, where a proof of concept can serve as a powerful research result, and the applied biomedical sciences where robust and usable systems are needed to drive the analysis of multiple subjects in a variety of clinical research scenarios. In particular, the Engineering Core is focused on such issues as interoperability between algorithms developed by the various cores of the NAC so that, for example, an R01 that results from an fMRI activation detection analysis can be used as the seeding points for DTI tractography to identify the white matter connections that may associate the activated R01 with other cortical and subcortical regions. By providing a common platform for research by the multiple cores, the potential value and applicability of each core is multiplied. Beyond functionality, the common platform gives users a common set of interface conventions, file formats, and related application-level support to enhance their productivity. Through the history of the NAC enterprise, our efforts have evolved increasingly towards the 3D Slicer platform as our mechanism for linking the basic computational research with the biomedical applications. 3D Slicer also acts as the conduit for delivering this work to the outside world as part of our outreach activities. This effort has, in fact, been so successful that 3D Slicer has in some sense graduated from the NAC to become an important part of several large NIH sponsored efforts including the NA-MIC, BIRN, and NCIGT efforts. This gratifying development increases the scope of the development activities beyond what NAC alone could provide and at the same time strengthens the foundations of the software.
这个子项目是许多研究子项目中利用 资源由NIH/NCRR资助的中心拨款提供。子项目和 调查员(PI)可能从NIH的另一个来源获得了主要资金, 并因此可以在其他清晰的条目中表示。列出的机构是 该中心不一定是调查人员的机构。 工程核心的目的是提供一个可行且高效的平台 将NAC技术集成到可用的软件应用程序中,以支持我们的 合作和外联活动。该平台在以下方面提供了重要的联系 应用数学和计算机科学的抽象世界,在那里证明 概念可以作为一个强大的研究成果,而应用生物医学科学 在各种临床研究场景中,需要强大和可用的系统来推动对多个对象的分析。具体而言,工程核心侧重于由NAC的各种核心开发的算法之间的互操作性等问题,因此,例如,从功能磁共振激活检测分析得到的R01可以被用作DTI脑束成像的种子点,以识别可能将激活的R01与其他皮质和皮质下区域相关联的白质连接。通过为多个核的研究提供公共平台,每个核的潜在价值和适用性成倍增加。 除了功能之外,通用平台还为用户提供了一套通用的界面 约定、文件格式和相关的应用程序级支持,以增强其 生产力。通过南汽企业的历史,我们的努力已经演变 越来越多地将3D Slicer平台作为我们连接基本 生物医学应用中的计算研究。3D Slicer还充当 作为我们外联活动的一部分,向外界提供这项工作的渠道。 事实上,这项工作非常成功,从某种意义上说,3D Slicer已经从NAC毕业,成为NIH赞助的几个大型项目的重要组成部分,包括NA-MIC、BIRN和NCIGT。这一令人欣慰的发展扩大了开发活动的范围,超出了NAC本身所能提供的范围,同时加强了软件的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN PIEPER其他文献

STEVEN PIEPER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN PIEPER', 18)}}的其他基金

ENGINEERING
工程
  • 批准号:
    8362587
  • 财政年份:
    2011
  • 资助金额:
    $ 57.75万
  • 项目类别:
ENGINEERING
工程
  • 批准号:
    8169705
  • 财政年份:
    2010
  • 资助金额:
    $ 57.75万
  • 项目类别:
ENGINEERING
工程
  • 批准号:
    7956472
  • 财政年份:
    2009
  • 资助金额:
    $ 57.75万
  • 项目类别:
APPLICATIONS
应用领域
  • 批准号:
    7669315
  • 财政年份:
    2008
  • 资助金额:
    $ 57.75万
  • 项目类别:
DISSEMINATION
传播
  • 批准号:
    7669325
  • 财政年份:
    2008
  • 资助金额:
    $ 57.75万
  • 项目类别:
ENGINEERING
工程
  • 批准号:
    7724772
  • 财政年份:
    2008
  • 资助金额:
    $ 57.75万
  • 项目类别:
SPL ENGINEERING CORE (FORMERLY THE BIRN SUBPROJECT)
SPL 工程核心(以前的 BIRN 子项目)
  • 批准号:
    7358984
  • 财政年份:
    2006
  • 资助金额:
    $ 57.75万
  • 项目类别:
SPL ENGINEERING CORE (FORMERLY THE BIRN SUBPROJECT)
SPL 工程核心(以前的 BIRN 子项目)
  • 批准号:
    7182663
  • 财政年份:
    2005
  • 资助金额:
    $ 57.75万
  • 项目类别:
APPLICATIONS
应用领域
  • 批准号:
    6988800
  • 财政年份:
    2004
  • 资助金额:
    $ 57.75万
  • 项目类别:
DISSEMINATION
传播
  • 批准号:
    6988932
  • 财政年份:
    2004
  • 资助金额:
    $ 57.75万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 57.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了