POPULATION-BASED 4D CARDIAC ATLAS OF MOUSE
基于群体的小鼠 4D 心脏图谱
基本信息
- 批准号:7726176
- 负责人:
- 金额:$ 0.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomic structuresAnimalsAtlasesBrainCardiacCharacteristicsComputer Retrieval of Information on Scientific Projects DatabaseComputing MethodologiesDataDiseaseFundingGrantHeartImageIn VitroInstitutionMagnetic Resonance ImagingMicroscopicModelingMusPlacementPopulationProcessPropertyResearchResearch PersonnelResolutionResourcesScienceShapesSourceStandards of Weights and MeasuresStructureSystemTechniquesUnited States National Institutes of HealthVariantbasein vivointerest
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
This project is aimed at developing a normative population based 4D atlas of the mouse heart at high spatio-temporal resolution. Once generated, this imaging data would be used to quantify the morphological and functional variation within and between the populations. Additionally these data could potentially be used in automatic segmentation of cardiac images or to examine the disease process.
Anatomical and functional variability is studied by placement of image data into a standard coordinate system. This achieved by utilizing registration algorithms that establish a one to one correspondence between the structures to be aligned. Such algorithms require addressing both the local shape differences and the variation in dynamic properties of the heart. Our collaborators in center for imaging science have developed mathematical and computational methods for comparison and statistical inference regarding anatomic structures in brain and in vitro animal heart model [1]. We would like to extend these techniques to capture dynamic characteristics of in vivo
animal heart models as well.
For preliminary experimentation we are focusing on collecting cine images of mouse heart acquired at near isotropic spatial resolution of 80 um or less with temporal resolution of 3-4 ms. We would be interested in both microCT and microscopic MR image data. With your contributon, we hope to be able to collect images at this resolution.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
该项目旨在开发一个规范的人口为基础的高时空分辨率的小鼠心脏的4D图谱。一旦生成,该成像数据将用于量化群体内和群体之间的形态和功能变化。此外,这些数据可能用于心脏图像的自动分割或检查疾病过程。
通过将图像数据放置到标准坐标系中来研究解剖和功能变异性。这通过利用在待对准的结构之间建立一一对应的配准算法来实现。这种算法需要解决心脏的局部形状差异和动态特性的变化。我们在成像科学中心的合作者已经开发了数学和计算方法,用于比较和统计推断大脑和体外动物心脏模型中的解剖结构[1]。我们希望扩展这些技术,以捕捉体内的动态特性,
动物心脏模型也是如此。
对于初步实验,我们专注于收集电影图像的小鼠心脏采集在近各向同性的空间分辨率为80微米或更低的时间分辨率为3-4毫秒。我们将在microCT和显微镜MR图像数据感兴趣。有了你的贡献,我们希望能够收集到这个分辨率的图像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAIMOND Lester WINSLOW其他文献
RAIMOND Lester WINSLOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAIMOND Lester WINSLOW', 18)}}的其他基金
Tools for Managing and Disseminating Cardiac Electrophysiology Data
管理和传播心脏电生理学数据的工具
- 批准号:
8103537 - 财政年份:2011
- 资助金额:
$ 0.65万 - 项目类别:
Tools for Managing and Disseminating Cardiac Electrophysiology Data
管理和传播心脏电生理学数据的工具
- 批准号:
8515511 - 财政年份:2011
- 资助金额:
$ 0.65万 - 项目类别:
Tools for Managing and Disseminating Cardiac Electrophysiology Data
管理和传播心脏电生理学数据的工具
- 批准号:
8312531 - 财政年份:2011
- 资助金额:
$ 0.65万 - 项目类别:
Tools for Managing and Disseminating Cardiac Electrophysiology Data
管理和传播心脏电生理学数据的工具
- 批准号:
8676904 - 财政年份:2011
- 资助金额:
$ 0.65万 - 项目类别:
Two-photon microscope Adapted for Automated 3D Tissue Reconstruction at High Spat
适用于高 Spat 自动 3D 组织重建的双光子显微镜
- 批准号:
7796504 - 财政年份:2010
- 资助金额:
$ 0.65万 - 项目类别:
MESOSCALE MODELING OF CARDIAC CALCIUM-INDUCED CALCIUM-RELEASE
心脏钙诱导钙释放的介观建模
- 批准号:
7957635 - 财政年份:2009
- 资助金额:
$ 0.65万 - 项目类别:
Large-Scale Compute Cluster for the Institute for Computational Medicine
计算医学研究所的大规模计算集群
- 批准号:
7497781 - 财政年份:2008
- 资助金额:
$ 0.65万 - 项目类别:
MESOSCALE MODELING OF CARDIAC CALCIUM-INDUCED CALCIUM-RELEASE
心脏钙诱导钙释放的介观建模
- 批准号:
7722472 - 财政年份:2008
- 资助金额:
$ 0.65万 - 项目类别:
Short Course on Integrative Modeling of the Cardiac Myocyte
心肌细胞综合建模短期课程
- 批准号:
7391159 - 财政年份:2007
- 资助金额:
$ 0.65万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.65万 - 项目类别:
Research Grant