Multifunctional Block Copolymer Scaffolds for Bone Repair
用于骨修复的多功能嵌段共聚物支架
基本信息
- 批准号:7741555
- 负责人:
- 金额:$ 37.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAdsorptionAllograftingAmino AcidsArchitectureAreaAutologous TransplantationBindingBiologicalBiomimeticsBone MarrowBone RegenerationBone TissueBone TransplantationCell AdhesionCell physiologyCellsChemistryCollagenCoupledCouplingDefectDentalDevelopmentDrug FormulationsEngineeringEnvironmentEthylene GlycolsExhibitsFDA approvedFamilyFibronectinsFigs - dietaryFutureGenerationsGlycolic-Lactic Acid PolyesterGoalsImplantIn SituLeadLengthLibrariesLifeLigandsLiteratureMechanicsMethodologyModelingMolecular WeightMorbidity - disease rateMorphologyOligonucleotidesOrganic SynthesisOrthopedicsOsteoblastsOsteogenesisOutcomePeptidesPhasePolymer ChemistryPolymersProceduresProcessProliferatingPropertyProteinsResearchResistanceRiskShapesSiteSolventsStromal CellsStructureSurfaceTechniquesTemperatureTestingTissue EngineeringVariantWorkbasebonecopolymercraniofacialcrosslinkdesigndisease transmissionethylene glycolflexibilityfunctional groupin vivoinnovationmimeticsmolecular scalemonomermultidisciplinarynovelosteoblast differentiationosteogenicpoly(lactic acid)polymerizationrepairedscaffoldself assemblysubcutaneous
项目摘要
The inability of current synthetic scaffold materials to direct osteogenic cells to proliferate, differentiate into osteoblasts, and produce sufficient quantities of bone tissue limits the development of synthetic scaffolds for bone grafting applications in crucial areas such as orthopaedic, dental, and craniofacial procedures. Our longterm goal is to create bio-inspired tissue-engineered constructs that promote bone formation and repair. As a first step toward this goal, the objective of this application is to engineer novel scaffolds with controlled architectures that present biomimetic ligands by exploiting phase separation and self-assembly properties of block copolymers and to evaluate the ability of these scaffolds to promote osteoblastic differentiation and bone formation. Our central hypothesis is that precise control of polymer block design through integration of “living” polymerizations and self-assembly at the supramolecular levels will lead to porous scaffolds with enhanced functionality. This hypothesis is based on our recent studies of polymer self-assembly and biomimetic surfaces that direct cell function. The rationale for this work is that these newly engineered matrices will enhance osteoblast activities and bone repair to overcome existing limitations associated with current synthetic scaffolds. Our multidisciplinary team is well prepared to undertake the proposed research based on our expertise in organic synthesis, polymer chemistry, cell-materials interactions, and tissue engineering. In Aim 1, novel synthetic strategies towards functionalized block copolymers coupled with self assembly properties of these copolymers at the molecular-scale and meso-scale will be exploited in order to engineer scaffolds. In Aim 2, the second generation of scaffolds incorporating multiple functionalities including
fibronectin-mimetic ligands to promote enhanced osteoblast cell adhesion and differentiation as well as proteinresistant poly(ethylene glycol) coatings will be fabricated. Osteogenic cell adhesion, proliferation, and differentiation will be evaluated. In Aim 3, we will evaluate the ability of these engineered scaffolds to promote in vivo osteoblastic differentiation and bone formation in an ectopic site. This work is expected to yield the following outcomes. We will: (i) identify block copolymers and controlled foaming approaches that yield families of mesoporous (50-500 μm pores) scaffolds of varying architectures (pore size, interconnectivity, and strut size, shape and separation); (ii) establish surface engineering strategies to render these materials protein adsorption-resistant while presenting controlled cell adhesive ligands; and (iii) demonstrate that these novel materials exhibit superior osteoblast cell adhesion and differentiation and promote in vivo bone formation compared to unmodified and conventional polymeric supports. Collectively, these studies will validate the proposed novel concepts towards high strength biomimetic scaffolds. Optimization of the mechanical properties of the newly developed scaffolds will be part of a future application submission.
目前的合成支架材料不能引导成骨细胞增殖、分化为成骨细胞并产生足够数量的骨组织,限制了合成支架在骨科、牙科和颅面外科等关键领域的骨移植应用的发展。我们的长期目标是创造受生物启发的组织工程结构,促进骨骼的形成和修复。作为实现这一目标的第一步,本应用的目标是设计具有可控结构的新型支架,通过利用嵌段共聚物的相分离和自组装特性来呈现仿生配体,并评估这些支架促进成骨细胞分化和骨形成的能力。我们的中心假设是,通过在超分子水平上整合“活性”聚合和自组装来精确控制聚合物嵌段设计,将导致具有增强功能的多孔支架。这一假说是基于我们最近对指导细胞功能的聚合物自组装和仿生表面的研究。这项工作的基本原理是,这些新设计的基质将增强成骨细胞的活性和骨修复,以克服现有的与当前合成支架相关的限制。我们的多学科团队基于我们在有机合成、聚合物化学、细胞-材料相互作用和组织工程方面的专业知识,为开展拟议的研究做好了充分的准备。在目标1中,将开发具有分子尺度和介观尺度自组装特性的官能化嵌段共聚物的新的合成策略,以实现支架工程。在目标2中,包含多种功能的第二代支架包括
将制备促进成骨细胞黏附和分化的纤维连接蛋白模拟配体以及抗蛋白聚乙二醇涂层。将评估成骨细胞的黏附、增殖和分化。在目标3中,我们将评估这些工程支架在异位部位促进体内成骨细胞分化和骨形成的能力。这项工作预计将产生以下成果。我们将:(I)确定嵌段共聚物和受控发泡方法,以产生不同结构(孔径、互连性、支柱尺寸、形状和分离)的介孔(50-500μm孔)支架家族;(Ii)建立表面工程策略,使这些材料在抗蛋白质吸附的同时提供受控的细胞黏附配体;以及(Iii)证明这些新型材料与未经修饰的和传统的聚合物载体相比,具有更好的成骨细胞黏附和分化能力,并促进体内骨形成。总的来说,这些研究将验证所提出的高强度仿生支架的新概念。对新开发的脚手架的力学性能进行优化将是未来申请的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARCUS WECK其他文献
MARCUS WECK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARCUS WECK', 18)}}的其他基金
Multifunctional Block Copolymer Scaffolds for Bone Repair
用于骨修复的多功能嵌段共聚物支架
- 批准号:
7923918 - 财政年份:2009
- 资助金额:
$ 37.64万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 37.64万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 37.64万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 37.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 37.64万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 37.64万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 37.64万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 37.64万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 37.64万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 37.64万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 37.64万 - 项目类别:
Investment Accelerator