Cytoplasmic trafficking of non-viral gene therapy vectors

非病毒基因治疗载体的细胞质运输

基本信息

  • 批准号:
    7697153
  • 负责人:
  • 金额:
    $ 34.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Under almost all conditions, using any method, the levels of gene transfer to any cell are low because many barriers exist for the efficient delivery of genes to cells. Taken one step further, gene transfer to tissues within living animals is even worse, at least in part since cells in all tissues are constantly exposed to mechanical stresses such as shear, compression, and stretch. Thus, we must elucidate the pathways and molecular mechanisms of gene delivery under static conditions and those of mechanical strain if we are to increase the efficacy of gene therapy. Mechanical stretch induces numerous biological responses in cells that are directly related to the process of gene delivery. Exogenous DNA must enter the cell, cross the cytoplasm, enter the nucleus, and be expressed for gene therapy to be successful. We have shown that gene delivery and expression in multiple cell types exposed to equibiaxial stretch is 10-fold more efficient than in cells grown under static conditions. We have also shown that this cyclic stretch reorganizes the cytoskeleton and increases the numbers of stable, acetylated microtubules by a mechanism mediated by inhibition of the cytoplasmic histone deacetylase HDAC6, whose main target is 1-tubulin. It has been shown that microtubule acetylation causes the recruitment of dynein motors and increases cytoplasmic trafficking of bound cargoes. We hypothesize that cyclic stretch modulates HDAC6 activity resulting in increased levels of acetylated microtubules and increased cytoplasmic trafficking of plasmid DNA-protein complexes toward the nucleus for enhanced gene expression. Although not a physiologically "normal" process, the interactions of plasmids with the host cell are vital to methods that scientists use every day and form the basis of gene therapy. The experiments in this application will elucidate the mechanisms of stretch-enhanced gene delivery in cultured cells and living animals, with a focus on the alveolar epithelium, a tissue that continuously undergoes cyclic stretch. Finally, we have developed an electroporation method for high-level, safe, non-viral gene transfer to the lung and have used this approach to treat lung injury in experimental animal models. We will now utilize this approach to explore the mechanisms of in vivo gene transfer and develop treatment approaches for the injured lung. The specific aims are to (1) determine the role of HDAC6 and acetylated microtubules in cyclic stretch-enhanced gene transfer in cells, (2) identify the components of the DNA-protein complex that facilitate movement of plasmids through the cytoplasm in stretched and unstretched cells, and (3) determine whether mechanical ventilation increases gene transfer to the alveolar epithelium in the mouse lung in vivo through HDAC6. PUBLIC HEALTH RELEVANCE: Gene therapy is an exciting and potentially very useful approach to treat a number of diseases at the molecular level. Unfortunately, many barriers for gene delivery to cells and animals exist that must be characterized before they can be overcome, leading to greater levels of gene transfer and gene therapy. Although most work on gene transfer has been studied in cells growing undisturbed in dishes, most cells in the body, especially those in the lung, our target organ of interest, are constantly undergoing various forms of mechanical strain including cyclic stretch. We will determine the molecular mechanisms by which the cells respond to cyclic stretch to rearrange their cytoskeleton and increase intracellular DNA movement and gene therapy in isolated cells and small animal models.
描述(由申请人提供):在几乎所有条件下,使用任何方法,基因转移至任何细胞的水平都很低,因为将基因有效递送至细胞存在许多障碍。更进一步,基因转移到活体动物组织中的情况甚至更糟,至少部分是因为所有组织中的细胞不断暴露于机械应力,如剪切、压缩和拉伸。因此,如果我们要提高基因治疗的功效,我们必须阐明静态条件下和机械应变条件下基因传递的途径和分子机制。机械拉伸会在细胞中诱导许多与基因传递过程直接相关的生物反应。外源DNA必须进入细胞、穿过细胞质、进入细胞核并表达,基因治疗才能成功。我们已经证明,在等双轴拉伸的多种细胞类型中,基因传递和表达的效率比在静态条件下生长的细胞高 10 倍。我们还表明,这种循环拉伸通过抑制细胞质组蛋白脱乙酰酶 HDAC6(其主要目标是 1-微管蛋白)介导的机制重组细胞骨架并增加稳定的乙酰化微管的数量。研究表明,微管乙酰化会导致动力蛋白马达的募集并增加结合货物的细胞质运输。我们假设循环拉伸调节 HDAC6 活性,导致乙酰化微管水平增加,并增加质粒 DNA-蛋白质复合物向细胞核的细胞质运输,从而增强基因表达。虽然这不是一个生理上的“正常”过程,但质粒与宿主细胞的相互作用对于科学家每天使用的方法至关重要,并构成基因治疗的基础。本申请中的实验将阐明培养细胞和活体动物中拉伸增强基因传递的机制,重点是肺泡上皮,一种持续经历周期性拉伸的组织。最后,我们开发了一种高水平、安全、非病毒基因转移到肺部的电穿孔方法,并使用这种方法治疗实验动物模型中的肺损伤。我们现在将利用这种方法来探索体内基因转移的机制并开发针对受损肺部的治疗方法。具体目标是 (1) 确定 HDAC6 和乙酰化微管在细胞中循环拉伸增强基因转移中的作用,(2) 鉴定 DNA-蛋白质复合物的成分,这些成分促进拉伸和未拉伸细胞中质粒穿过细胞质的运动,以及 (3) 确定机械通气是否会增加小鼠肺中基因转移到肺泡上皮的能力。 体内通过HDAC6。 公共卫生相关性:基因治疗是一种令人兴奋且可能非常有用的方法,可以在分子水平上治疗多种疾病。不幸的是,基因传递到细胞和动物中存在许多障碍,必须先对其进行表征,然后才能克服这些障碍,从而实现更高水平的基因转移和基因治疗。尽管大多数基因转移工作都是在培养皿中不受干扰地生长的细胞中进行的,但体内的大多数细胞,尤其是我们感兴趣的靶器官肺部的细胞,都在不断地承受各种形式的机械应变,包括循环拉伸。我们将确定细胞响应循环拉伸以重新排列其细胞骨架并增加细胞内 DNA 运动和分离细胞和小动物模型中的基因治疗的分子机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David A Dean其他文献

David A Dean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David A Dean', 18)}}的其他基金

Intracellular Trafficking of DNA for Gene Therapy
用于基因治疗的 DNA 细胞内运输
  • 批准号:
    10710840
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
  • 批准号:
    10378509
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10187645
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10631224
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10414888
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Gene therapy for GERD-associated esophageal epithelial barrier dysfunction
GERD相关食管上皮屏障功能障碍的基因治疗
  • 批准号:
    10372106
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
  • 批准号:
    10593959
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
  • 批准号:
    10056811
  • 财政年份:
    2020
  • 资助金额:
    $ 34.65万
  • 项目类别:
Novel Peptide/siRNA Nanoparticles for Treatment of Acute Lung Injury
用于治疗急性肺损伤的新型肽/siRNA纳米颗粒
  • 批准号:
    9376455
  • 财政年份:
    2017
  • 资助金额:
    $ 34.65万
  • 项目类别:
Development of a gene therapy approach to treat acute lung injury using a preclinical, large animal model
使用临床前大型动物模型开发治疗急性肺损伤的基因治疗方法
  • 批准号:
    9044084
  • 财政年份:
    2016
  • 资助金额:
    $ 34.65万
  • 项目类别:

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 34.65万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 34.65万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 34.65万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 34.65万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 34.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了