Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
基本信息
- 批准号:7631924
- 负责人:
- 金额:$ 36.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:BrainClassificationComputer-Assisted Image AnalysisDataDetectionDevelopmentDiagnosisDiscriminationExposure toFeedbackInvestigationKnowledgeLeadLesionMeasuresModelingMotionNeuronsPatternPerformanceProcessPsychophysiologyRehabilitation therapyResearchResearch PersonnelShapesStagingStimulusTestingTimeTrainingVisionVisualbasebrain disorder therapyclinical applicationimprovedpublic health relevanceresearch studyresponsesensitivity trainingstemvisual learning
项目摘要
DESCRIPTION (provided by applicant): Visual learning (VL) is defined as performance enhancement as a result of training on or exposure to a visual feature and is regarded as manifestation of plasticity in visual and brain processing. Since different researchers have tended to use different sets of parameters as their stimuli, tasks, etc in conducting their VL studies, this practice has made it very difficult to make direct comparisons between the findings and to find, if any, general rules of VL. Nevertheless, there have not been strong efforts to organize these divergent results and to identify any possible general rule(s). In the present proposal, we aim to clarify general rules of VL by examining various aspects of VL within the same framework. In all the proposed experiments, we will examine how sensitivity to feature values (e.g., -45, 00, 450 in orientation) at and around a trained feature value is changed as a result of training (sensitivity tuning function changes). Specifically, we will examine effects of different types of training (detection, discrimination and exposure), time-course of training and feedback to subjects (response feedback, block feedback and incorrect feedback) on sensitivity tuning function shapes. To date, in most studies, effects of the three fundamental factors (training, time-course and feedback) and different sub-factors (e.g., detection, discrimination and exposure in training) on VL have been studied independently without clearly relating to each other. In the current proposal, by systematic investigations of effects of these different factors/sub-factors on sensitivity tuning function changes, we will test whether these effects may result from common underlying mechanism changes that are reflected by one or both of two component patterns in sensitivity tuning function changes, performance increase at and close to the trained feature value (center increase) and performance decrease within a wider range of feature values (wide-range decrease). PUBLIC HEALTH RELEVANCE: Visual learning is regarded as plasticity of visual and brain processing. The proposed research on visual learning has potential for clinical applications by contributing to scientific knowledge leading to improved diagnosis of, and rehabilitative therapies for, brain disorders and lesions, in particular those related to visual function.
描述(由申请人提供):视觉学习(VL)被定义为作为视觉特征训练或暴露于视觉特征的结果的性能增强,并且被视为视觉和大脑处理中可塑性的表现。由于不同的研究者倾向于使用不同的参数作为他们的刺激,任务等进行VL研究,这种做法使得很难直接比较的结果,并找到,如果有的话,VL的一般规则。然而,还没有作出强有力的努力来组织这些不同的结果,并确定任何可能的一般规则。在本提案中,我们的目的是通过在同一框架内审查脆弱性名单的各个方面,澄清脆弱性名单的一般规则。在所有提出的实验中,我们将研究对特征值(例如,-45,00,450(方向上)由于训练而改变训练特征值及其周围(灵敏度调谐函数改变)。具体而言,我们将研究不同类型的培训(检测,歧视和曝光),培训的时间过程和反馈给受试者(反应反馈,块反馈和不正确的反馈)的影响灵敏度调谐功能的形状。到目前为止,在大多数研究中,三个基本因素(培训,时间过程和反馈)和不同的子因素(例如,检测、辨别和训练中的暴露)对VL的影响已经被独立地研究,而没有明确地相互关联。在本提案中,通过系统研究这些不同因素/子因素对灵敏度调节功能变化的影响,我们将测试这些影响是否可能是由灵敏度调节功能变化中的两个组件模式之一或两者反映的共同潜在机制变化引起的,性能在训练特征值处和接近训练特征值处增加(中心增加),并且性能在更宽的特征值范围内降低(宽范围降低)。公共卫生相关性:视觉学习被认为是视觉和大脑加工的可塑性。拟议的视觉学习研究具有临床应用潜力,有助于科学知识,从而改善对大脑疾病和病变的诊断和康复治疗,特别是与视觉功能有关的疾病和病变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takeo Watanabe其他文献
Takeo Watanabe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takeo Watanabe', 18)}}的其他基金
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
8249468 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
8058738 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
9254562 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
7789450 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
8532473 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
SYSTEMATIC PSYCHOPHYSICAL INVESTIGATION OF VISUAL LEARNING
视觉学习的系统心理物理学研究
- 批准号:
9788473 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
SYSTEMATIC PSYCHOPHYSICAL INVESTIGATION OF VISUAL LEARNING
视觉学习的系统心理物理学研究
- 批准号:
10294788 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning.
视觉学习的系统心理物理学研究。
- 批准号:
8578850 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
Systematic Psychophysical Investigation of Visual Learning
视觉学习的系统心理物理学研究
- 批准号:
8885171 - 财政年份:2009
- 资助金额:
$ 36.56万 - 项目类别:
相似海外基金
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Research Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Fellowship Award
Classification of contemporary Kansai dialects
当代关西方言的分类
- 批准号:
24K03842 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 36.56万 - 项目类别:
Standard Grant