System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
基本信息
- 批准号:7760204
- 负责人:
- 金额:$ 37.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAuditoryBehavioralBehavioral ParadigmBiological MarkersBiological ModelsBrainCharacteristicsClinicalCodeCognitiveComplexComputer AnalysisComputer softwareDataDependenceDevelopmentDevelopment PlansDiagnostic testsElectroencephalographyElectromagneticsElectrophysiology (science)EventEvent-Related PotentialsExperimental DesignsFrequenciesFunctional Magnetic Resonance ImagingHumanImageryMasksMeasuresMemoryModelingModificationMotorMovementNeurosciencesPhasePilot ProjectsProcessProtocols documentationPsychological Refractory PeriodReaction TimeRecovery of FunctionResearchResearch PersonnelSchizophreniaSensorySignal TransductionSimulateSmall Business Innovation Research GrantSoftware EngineeringSoftware ToolsSourceStimulusSystemTimeVariantVisualabstractingbaseclinically significantcognitive neurosciencecomputerized toolsdata modelingdesignencephalographygraphical user interfaceimprovedinnovationmagnetic fieldmultisensoryneurophysiologyneuropsychiatrynovelprototypepublic health relevanceresponsesensory gatingtheoriestool
项目摘要
DESCRIPTION (provided by applicant): Cognitive-behavioral neuroscientists lack adequate computational tools for identifying linear and nonlinear dynamical system models, both deterministic and stochastic from human electrophysiological data, including electro- and magneto-encephalography. This makes it difficult or impossible to investigate systematically many scientifically and clinically significant phenomena. These phenomena include modification of evoked response components by preceding stimuli (e.g., response suppression or facilitation, recovery functions, sensory gating, echoic memory lifetimes, priming), modification by following stimuli (e.g., masking), multisensory evoked responses (e.g., auditory-visual facilitation), and reaction time dependence of sensory-related and motor-related brain responses (e.g., psychological refractory period). Commercial software tools to be developed under this SBIR project will enable cognitive-behavioral neurophysiologists to characterize these modulations of variable event-related transients within the framework of event-related Volterra modeling. These novel modeling tools will facilitate new experimental designs that harness a largely unexploited source of information about brain dynamics: variation of inter-event interval sequences. The software will be validated using simulated and experimental data, including a pilot study that will lay the basis for identifying candidate biomarkers for schizophrenia research. These tools will be integrated into our existing EMSE Suite software product using an FDA-compliant quality management process for use initially by basic and clinical neuroscience researchers.
PUBLIC HEALTH RELEVANCE: Cognitive-behavioral neuroscientists lack adequate computational tools for identifying linear and nonlinear dynamical system models, from human electrophysiological data, making it difficult or impossible to investigate systematically many scientifically and clinically significant phenomena, including response suppression or facilitation, recovery functions, sensory gating, echoic memory lifetimes, and priming. Commercial software tools to be developed under this SBIR project will enable cognitive-behavioral neurophysiologists to characterize these modulations of variable event-related transients. The software will be validated using simulated and experimental data, including a pilot study that will lay the basis for identifying candidate biomarkers for schizophrenia research.
描述(由申请人提供):认知行为神经科学家缺乏足够的计算工具来识别线性和非线性动态系统模型,包括来自人类电生理数据的确定性和随机性,包括脑电图和脑磁图。这使得很难或不可能系统地调查许多科学和临床上重要的现象。这些现象包括通过先前刺激(例如,反应抑制或促进、恢复功能、感觉门控、回声记忆寿命、启动),通过跟随刺激的修改(例如,掩蔽),多感觉诱发反应(例如,视觉-视觉促进),以及感觉相关和运动相关脑反应的反应时间依赖性(例如,心理不应期)。在该SBIR项目下开发的商业软件工具将使认知行为神经生理学家能够在事件相关的沃尔泰拉建模框架内表征可变事件相关瞬变的这些调制。这些新的建模工具将促进新的实验设计,利用一个基本上未开发的信息来源的大脑动力学:事件间间隔序列的变化。该软件将使用模拟和实验数据进行验证,包括一项试点研究,该研究将为确定精神分裂症研究的候选生物标志物奠定基础。这些工具将使用符合FDA的质量管理流程集成到我们现有的EMSE套件软件产品中,最初供基础和临床神经科学研究人员使用。
公共卫生相关性:认知行为神经科学家缺乏足够的计算工具来识别线性和非线性动力系统模型,从人类电生理数据,使得它很难或不可能系统地调查许多科学和临床上重要的现象,包括反应抑制或促进,恢复功能,感觉门控,回声记忆寿命,和启动。商业软件工具将在这个SBIR项目下开发,使认知行为神经生理学家来表征这些变量的事件相关的瞬变调制。该软件将使用模拟和实验数据进行验证,包括一项试点研究,该研究将为识别精神分裂症研究的候选生物标志物奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark E Pflieger其他文献
Mark E Pflieger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark E Pflieger', 18)}}的其他基金
System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
- 批准号:
7109862 - 财政年份:2006
- 资助金额:
$ 37.06万 - 项目类别:
System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
- 批准号:
8015227 - 财政年份:2006
- 资助金额:
$ 37.06万 - 项目类别:
Regional Brain Activity Estimation from M/EEG Data
根据 M/EEG 数据估计区域大脑活动
- 批准号:
6403941 - 财政年份:2001
- 资助金额:
$ 37.06万 - 项目类别:
Regional Brain Activity Estimation from M/EEG Data
根据 M/EEG 数据估计区域大脑活动
- 批准号:
6550691 - 财政年份:2001
- 资助金额:
$ 37.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.06万 - 项目类别:
Continuing Grant