BOLD-Related EEG Signal Estimation Software

BOLD相关脑电图信号估计软件

基本信息

  • 批准号:
    8058935
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-15 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the dominant noninvasive modality for studying human brain functional localization in basic and clinical neurosciences. Although the three-dimensional spatial resolution of scalp-recorded electroencephalography (EEG) is ambiguous, its temporal resolution is roughly three orders of magnitude better than fMRI. Consequently, a key issue in imaging neuroscience is how to integrate EEG with fMRI. The absence of a reliable computational bridge linking EEG to fMRI is a critical barrier to an integrated spatiotemporal experimental investigation of human brain function. We propose to develop a data-driven approach to integration-detection and estimation of regional BOLD- related EEG (rBRE) signals-which is constrained by a simple (though extensible) functional model of neuroelectric-hemodynamic coupling. An rBRE signal is a spatially and temporally filtered EEG signal which, when transformed via the functional model, demonstrates statistically significant coupling strength and regional specificity. Concurrent EEG-fMRI datasets are used to tune spatial and temporal filters which maximize EEG-BOLD coupling based on a particular form of conditional mutual information. After detection, an rBRE signal may be estimated at the temporal resolution of EEG. After successful completion of Phase I, we will have implemented rBRE signal detection algorithms in prototype software, verified their correct implementation using quasi-realistic simulations, and studied the effects of initialization errors, SNR, and region size. In particular, we will have shown that it is feasible to detect regional BOLD-related EEG signals reliably in human data. PUBLIC HEALTH RELEVANCE: How to integrate EEG with fMRI data is an important issue faced by many cognitive, behavioral, and social neuroscientists who are practitioners of both modalities. If successful, the research and development efforts described in this proposal will position SSI as a leading, innovative provider of software for integrated EEG-fMRI analysis. In addition to supporting concurrent EEG-fMRI capabilities, the developed software will be useful to neurophysiology labs which have access primarily to EEG apart from fMRI. Scientists working with us are interested in this software for the study of neurological, neurodevelopmental and psychiatric disorders, as well as basic brain research.
描述(由申请人提供):血氧水平依赖性(BOLD)功能磁共振成像(fMRI)是基础和临床神经科学中研究人脑功能定位的主要无创模式。虽然头皮记录脑电图(EEG)的三维空间分辨率是模糊的,其时间分辨率大约是三个数量级优于功能磁共振成像。因此,脑电与功能磁共振成像的结合是影像神经科学的一个关键问题。缺乏一个可靠的计算桥梁连接脑电图功能磁共振成像是一个关键的障碍,整合的时空人脑功能的实验研究。我们建议开发一种数据驱动的方法来集成区域BOLD相关EEG(rBRE)信号的检测和估计,该信号受神经电-血流动力学耦合的简单(但可扩展)功能模型的约束。rBRE信号是经空间和时间滤波的EEG信号,当通过功能模型进行变换时,其显示出统计上显著的耦合强度和区域特异性。并发EEG-fMRI数据集用于调整空间和时间滤波器,其基于特定形式的条件互信息来最大化EEG-BOLD耦合。在检测之后,可以在EEG的时间分辨率下估计rBRE信号。在第一阶段成功完成后,我们将在原型软件中实现rBRE信号检测算法,使用准现实模拟验证其正确实现,并研究初始化误差,SNR和区域大小的影响。特别是,我们将证明,它是可行的,以检测区域BOLD相关的EEG信号可靠的人类数据。 公共卫生关系:如何整合EEG和fMRI数据是许多认知、行为和社会神经科学家所面临的重要问题。如果成功,本提案中描述的研究和开发工作将使SSI成为集成EEG-fMRI分析软件的领先创新供应商。除了支持并发EEG-fMRI功能,开发的软件将是有用的神经生理学实验室,主要访问EEG除了fMRI。与我们合作的科学家对这款用于神经系统、神经发育和精神疾病研究以及基础大脑研究的软件感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark E Pflieger其他文献

Mark E Pflieger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark E Pflieger', 18)}}的其他基金

Multimodal Resting State Network Tools
多模式静息状态网络工具
  • 批准号:
    8201127
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
Multimodal Resting State Network Tools
多模式静息状态网络工具
  • 批准号:
    8312482
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
  • 批准号:
    7109862
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
  • 批准号:
    8015227
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
System Identification Software for Cognitive Electrophysiology
认知电生理学系统识别软件
  • 批准号:
    7760204
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
Causal Source Analysis of EEG
脑电图因果源分析
  • 批准号:
    6583136
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
Causal Source Analysis of EEG
脑电图因果源分析
  • 批准号:
    7259369
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
Causal Source Analysis of EEG
脑电图因果源分析
  • 批准号:
    7108143
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
Regional Brain Activity Estimation from M/EEG Data
根据 M/EEG 数据估计区域大脑活动
  • 批准号:
    6403941
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
Regional Brain Activity Estimation from M/EEG Data
根据 M/EEG 数据估计区域大脑活动
  • 批准号:
    6550691
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:

相似海外基金

Understanding the relationship between cannabis use and attention-deficit/hyperactivity disorder
了解大麻使用与注意力缺陷/多动症之间的关系
  • 批准号:
    2874883
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
RestEaze: A Novel Wearable Device and Mobile Application to Improve the Diagnosis and Management of Restless Legs Syndrome in Pediatric Patients with Attention Deficit/Hyperactivity Disorder
RestEaze:一种新型可穿戴设备和移动应用程序,可改善注意力缺陷/多动症儿科患者不宁腿综合症的诊断和管理
  • 批准号:
    10760442
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Diagnosis and Treatment of Adult Attention-Deficit/Hyperactivity Disorder: A Workshop
成人注意力缺陷/多动症的诊断和治疗:研讨会
  • 批准号:
    10825708
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Maternal Attention Deficit Hyperactivity Disorder (m-ADHD): Mental Health, Pregnancy and Infant Outcomes
母亲注意力缺陷多动障碍 (m-ADHD):心理健康、妊娠和婴儿结局
  • 批准号:
    488888
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
SBIR Phase I: A novel caregiver-centered mobile app and artificial intelligence (AI) coaching intervention for pediatric Attention Deficit Hyperactivity Disorder (ADHD)
SBIR 第一阶段:一款新颖的以护理人员为中心的移动应用程序和人工智能 (AI) 辅导干预儿童注意力缺陷多动障碍 (ADHD)
  • 批准号:
    2335539
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Machine Learning Methods to Develop and Deploy Real-Time Risk Surveillance for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder from the Electronic Health Record
用于开发和部署电子健康记录中自闭症谱系障碍和注意力缺陷多动障碍实时风险监测的机器学习方法
  • 批准号:
    10449468
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Do Cerebrovascular Factors mediate the possible link between later-life Attention-Deficit/Hyperactivity Disorder and the development of Lewy Body Diseases?
脑血管因素是否介导晚年注意力缺陷/多动障碍与路易体疾病发展之间的可能联系?
  • 批准号:
    460431
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Defining Embodied Characteristics of Decision Making in Attention Deficit Hyperactivity Disorder
定义注意力缺陷多动障碍决策的具体特征
  • 批准号:
    10316100
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
The biological connection between educational attainment and attention-deficit/hyperactivity disorder in contrasting environments
对比环境中教育程度与注意力缺陷/多动症之间的生物学联系
  • 批准号:
    10677008
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Conceptualising and Measuring Attention-Deficit Hyperactivity Disorder (ADHD) Across the Lifespan
在整个生命周期中概念化和测量注意力缺陷多动障碍 (ADHD)
  • 批准号:
    2689864
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了