Learning System for Continuous Professional Education in Low Vision Rehabilitatio
低视力康复持续专业教育学习系统
基本信息
- 批准号:8002194
- 负责人:
- 金额:$ 9.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-03 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAlgorithmsBenchmarkingCalibrationClientClinicalClinical DataClinical ResearchCommunitiesComputational algorithmComputer AssistedComputer softwareComputersConsultCritiquesDataData AnalysesDatabasesDevelopmentEducationEffectivenessEquipment and supply inventoriesEventEyeFeedbackFoundationsGeneral PopulationGenerationsGoalsGrantHealth ProfessionalHealthcare SystemsIndividualInstitutesInternetInterventionKnowledgeLearningLicensingLifeLiteratureMarketingMeasuresMentorsMetadataMethodsModelingMonitorOnline SystemsOutcomeOutcome MeasurePatient TransferPatientsPersonsPhaseProcessProfessional EducationProviderPsychological reinforcementPublished CommentPublishingReadingRecordsRehabilitation OutcomeRehabilitation therapyReportingResearchResearch PersonnelResearch Project GrantsResource SharingServicesSliceSmall Business Technology Transfer ResearchSocial ReinforcementSubgroupSurveysSystemSystems IntegrationTestingTimeVision researchVisualVisual impairmentWorkbaseclinical practicedesignimprovedinformation processinginterestmultidisciplinaryopen sourcepeerprogramsprototyperehabilitation serviceresponserole modeltoolvisual informationvisual motor
项目摘要
Emerald Education Systems has developed an online continuing professional education learning system that targets low vision rehabilitation service providers. This CE learning system has three components: 1) a set of coordinated in depth online courses that provide a broad and deep foundation of knowledge on low vision rehabilitation that is delivered using a didactic approach at a learner-controlled pace; 2) an online telementoring system that transmits live video and audio of a mentee working with a low vision patient in a clinical setting to a mentor who remotely monitors and guides the mentee; and 3) a web-based multidisciplinary learning community that enables low vision rehabilitation professionals to interact through threaded forums and live chat, produce and publicly comment on posted clinical cases and issue-related articles, and share resources with colleagues. The presently proposed Phase I STTR has the aim of transferring low vision patient survey, data entry, data analysis, and reporting algorithms from Johns Hopkins low vision rehabilitation researchers to EES to develop a fourth component of the CE learning system. This fourth component will audit participating clinicians' practices with low vision patients, provide feedback on the clinician's individual patient outcomes, and benchmark their outcomes against those of their peers and those published in the clinical research literature. The first aim is to develop and optimize an adaptive computer-assisted patient survey that administers the Activity Inventory over the internet and estimates six functional ability measures on an interval scale for each patient. The second aim is to develop an online patient state survey and online clinical and practice data entry system, which together with the AI survey data and estimated functional ability measures, will create and store a multidimensional data hypercube for each clinician. The third aim is to develop a standardized report of patient data collected by and stored in the EES server that can be downloaded by the clinician and added to the patient's records. The fourth aim is to develop an online analytical processing system that will enable the clinician to monitor outcomes, explore and slice the datacube for his or her patients, perform patient subgroup analyses of outcomes, and compare summarized outcomes to the data of his or her peers or to metadata from published studies. The goal of Phase I is to develop functional prototypes of these system components using well-developed open-source system components under a general public license. Phase II will develop an alpha prototype that will be integrated with the CE learning community content management system and conduct a research project to determine if the CE learning system with audit/feedback/benchmarking leads to changes in practices that result in improved patient outcomes.
Emerald Education Systems开发了一个针对低视力康复服务提供者的在线继续专业教育学习系统。该CE学习系统有三个组成部分:1)一套协调深入的在线课程,提供了广泛而深入的低视力康复知识基础,采用教学方法,以学习者控制的速度提供;(二)在线远程指导系统,其将在临床环境中与低视力患者一起工作的受指导者的实况视频和音频传输给远程监测和指导的指导者受指导者;以及3)一个基于网络的多学科学习社区,使低视力康复专业人员能够通过线程论坛和实时聊天进行互动,对发布的临床病例和与问题相关的文章进行制作和公开评论,并与同事共享资源。目前提出的I期STTR旨在将约翰霍普金斯低视力康复研究人员的低视力患者调查、数据输入、数据分析和报告算法转移到EES,以开发CE学习系统的第四个组件。这第四个组成部分将审计参与临床医生的做法与低视力患者,提供反馈的临床医生的个人患者的结果,并基准他们的结果对那些他们的同行和那些发表在临床研究文献。第一个目标是开发和优化一个自适应的计算机辅助患者调查,管理活动清单在互联网上,并估计六个功能的能力措施的间隔规模为每个病人。第二个目标是开发一个在线患者状态调查和在线临床和实践数据输入系统,该系统将与人工智能调查数据和估计的功能能力指标一起,为每位临床医生创建和存储多维数据超立方体。第三个目标是开发EES服务器收集并存储的患者数据的标准化报告,该报告可由临床医生下载并添加到患者记录中。第四个目标是开发一个在线分析处理系统,使临床医生能够监测结果,为他或她的患者探索和切片数据,对结果进行患者亚组分析,并将总结的结果与他或她的同行数据或已发表研究的元数据进行比较。第一阶段的目标是在一般公共许可证下,使用开发良好的开放源码系统组件开发这些系统组件的功能原型。第二阶段将开发一个alpha原型,该原型将与CE学习社区内容管理系统集成,并进行一个研究项目,以确定带有审计/反馈/基准的CE学习系统是否会导致实践的变化,从而改善患者的结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT W. MASSOF其他文献
ROBERT W. MASSOF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT W. MASSOF', 18)}}的其他基金
Optimal magnification and oculomotor strategies in low vision patients
低视力患者的最佳放大倍率和动眼神经策略
- 批准号:
9309502 - 财政年份:2017
- 资助金额:
$ 9.97万 - 项目类别:
Comparative studies of low vision rehabilitation outcome measures
低视力康复结果测量的比较研究
- 批准号:
8662782 - 财政年份:2012
- 资助金额:
$ 9.97万 - 项目类别:
Comparative studies of low vision rehabilitation outcome measures
低视力康复结果测量的比较研究
- 批准号:
8475480 - 财政年份:2012
- 资助金额:
$ 9.97万 - 项目类别:
Comparative studies of low vision rehabilitation outcome measures
低视力康复结果测量的比较研究
- 批准号:
8270190 - 财政年份:2012
- 资助金额:
$ 9.97万 - 项目类别:
Comparative studies of low vision rehabilitation outcome measures
低视力康复结果测量的比较研究
- 批准号:
9087252 - 财政年份:2012
- 资助金额:
$ 9.97万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 9.97万 - 项目类别:
Continuing Grant