Optically Patterned DNA Prism
光学图案 DNA 棱镜
基本信息
- 批准号:7942277
- 负责人:
- 金额:$ 16.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:BiologyBiomedical ResearchComputer SimulationDNADNA FingerprintingDevicesElectrophoresisEngineeringEvaluationExhibitsGenomeGenomicsGoalsGovernmentInfectious AgentIonsLaboratoriesLeadMedical ResearchMedicineMethodsMicrofluidic MicrochipsMicrofluidicsMinnesotaModelingMolecular BiologyMolecular WeightMorphologyNanostructuresOpticsPathogen detectionPatternPersonsPhysiologic pulseProcessProductionRecombinant DNAResearchResolutionRestriction MappingRouteSepharoseSilicon DioxideSpeedStructureSystemTimeUniversitiesWorkcostdesignelectric fieldflexibilitygel electrophoresisimprovedinnovationmicro-total analysis systemmodels and simulationnanofabricationnanofluidicnanopatternnanoscalenanostructurednoveloperationphotonicspolyacrylamide gelspreventprogramsprototypepublic health relevanceresearch studyscale upself assemblysimulationsubmicrontheories
项目摘要
DESCRIPTION (provided by applicant): DNA gel electrophoresis is arguably the most widespread laboratory method in molecular biology, underlying an enormous range of analytical and preparative tasks. The speed and efficiency of this process could be greatly advanced by the DNA prism, a microfluidic method for continuously separating a mixture of DNA by size. This device provides (i) the molecular weight of the components (the analytical task) and (ii) purified components at the outlets (the preparative task). Existing DNA prisms were fabricated via photolithography and reactive ion etching of fused silica or by colloidal self-assembly. Unfortunately, neither of these methods is sufficient to move the DNA prism into routine use in biology labs. The long-term goal of this research program is to develop new nanostructured media that can provide order of magnitude improvements in separation speed and resolution when compared to gel electrophoresis. The objectives of this particular application are to (i) develop a process that is suitable for mass-production of DNA prism electrophoresis chips containing a large, three-dimensional array of perfectly ordered, uniform, sub-micron pores and (ii) demonstrate the ability of this medium to separate DNA. To accomplish these goals, an optical patterning method will be used to fabricate nanostructures in photoresist, the nanostructures will be integrated into a microchannel that provides a pulsed electric field, and the separating power of the device will be established using DNA ladders. To aid in the engineering of this device, optical theory will be used to design the structures and a Monte Carlo simulation model will be used to predict the separation from a particular pore structure. The research plan is thus divided into two specific aims: Specific Aim 1: Fabricate a DNA prism through optical patterning and demonstrate its separation ability. Specific Aim 2: Engineer optimal DNA prisms for separating different DNA size-ranges. This research is significant because it will lead to substantial reductions in the cost and time required for DNA separations. Optically patterned media should (i) exhibit marked improvements in separation time and resolution when compared to gel electrophoresis while (ii) being much easier to fabricate and more robust than existing nanofluidic devices for DNA separations. The devices produced by this research will impact molecular biology in general and genomics in particular by providing a route towards mass-produced chips for sizing DNA and collecting the products. The work is innovative because it uses methods developed in the field of photonic crystals to provide novel media for biomolecule electrophoresis. Taken as a whole, this research program will impact the larger field of biomicrofluidics and nanofluidics by providing approaches to create three-dimensional ordered media.
PUBLIC HEALTH RELEVANCE: The proposed work will lead to improved nanoscale systems for rapid and high-resolution separations of DNA. These devices will accelerate a number of key genomics applications, such as DNA fingerprinting of infectious organisms and genome assembly.
描述(由申请人提供):DNA凝胶电泳可以说是分子生物学中最广泛的实验室方法,是大量分析和制备任务的基础。这一过程的速度和效率可以通过DNA棱镜大大提高,DNA棱镜是一种按大小连续分离DNA混合物的微流体方法。该装置提供(i)组分的分子量(分析任务)和(ii)出口处的纯化组分(制备任务)。现有的DNA棱镜是通过光刻和熔融石英的反应离子蚀刻或胶体自组装制造的。不幸的是,这两种方法都不足以将DNA棱镜转移到生物实验室的日常使用中。这项研究计划的长期目标是开发新的纳米结构介质,与凝胶电泳相比,可以在分离速度和分辨率方面提供数量级的改进。该特定申请的目的是(i)开发适合于大量生产DNA棱镜电泳芯片的方法,所述DNA棱镜电泳芯片包含完全有序的、均匀的、亚微米孔的大的三维阵列,和(ii)证明该介质分离DNA的能力。为了实现这些目标,将使用光学图案化方法在光致抗蚀剂中制造纳米结构,纳米结构将被集成到提供脉冲电场的微通道中,并且将使用DNA梯来建立装置的分离能力。为了帮助该装置的工程设计,将使用光学理论来设计结构,并使用蒙特卡罗模拟模型来预测与特定孔结构的分离。因此,研究计划分为两个具体目标:具体目标1:通过光学图案制作DNA棱镜,并展示其分离能力。具体目标2:设计最佳的DNA棱镜,用于分离不同的DNA大小范围。这项研究意义重大,因为它将大大降低DNA分离所需的成本和时间。光学图案化介质应当(i)与凝胶电泳相比在分离时间和分辨率方面表现出显著的改进,同时(ii)比现有的用于DNA分离的纳米流体装置更容易制造并且更鲁棒。这项研究产生的设备将影响分子生物学,特别是基因组学,为大规模生产DNA大小和收集产品的芯片提供了一条途径。这项工作具有创新性,因为它使用了光子晶体领域开发的方法,为生物分子电泳提供了新的介质。总的来说,这项研究计划将通过提供创建三维有序介质的方法来影响生物微流体和纳米流体的更大领域。
公共卫生相关性:拟议的工作将导致改进的纳米系统,用于快速和高分辨率的DNA分离。这些设备将加速一些关键的基因组学应用,如感染性生物的DNA指纹和基因组组装。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin D Dorfman其他文献
Kevin D Dorfman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin D Dorfman', 18)}}的其他基金
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
- 批准号:
10175515 - 财政年份:2021
- 资助金额:
$ 16.01万 - 项目类别:
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
- 批准号:
10412055 - 财政年份:2021
- 资助金额:
$ 16.01万 - 项目类别:
Isolation of long DNA for next-generation genomics applications
分离长 DNA 以用于下一代基因组学应用
- 批准号:
9302912 - 财政年份:2017
- 资助金额:
$ 16.01万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
8018171 - 财政年份:2010
- 资助金额:
$ 16.01万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
8214689 - 财政年份:2010
- 资助金额:
$ 16.01万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
7762906 - 财政年份:2010
- 资助金额:
$ 16.01万 - 项目类别:
相似海外基金
Systems Lipidomics tools and resources for biomedical research; LIPID MAPS.
用于生物医学研究的系统脂质组学工具和资源;
- 批准号:
MR/Y000064/1 - 财政年份:2024
- 资助金额:
$ 16.01万 - 项目类别:
Research Grant
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881457 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881508 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2883713 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
Training Biomedical Research Teams for Rigor and Reproducibility in Data Science
培训生物医学研究团队以确保数据科学的严谨性和可重复性
- 批准号:
10723223 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881331 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
1st year MSc (Interdisciplinary Biomedical Research). The student will be assigned to a PhD project prior to the 2nd year of study.
第一年理学硕士(跨学科生物医学研究)。
- 批准号:
2881518 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:
Studentship
Combining Separation, Digestion, and Ionization on a Mass Spectrometry Cartridge to Enable Biomedical Research on Proteoforms
在质谱柱上结合分离、消化和电离,以实现蛋白质形式的生物医学研究
- 批准号:
10637225 - 财政年份:2023
- 资助金额:
$ 16.01万 - 项目类别:














{{item.name}}会员




