Dynamics of DNA Barcodes in Nanochannels
纳米通道中 DNA 条形码的动力学
基本信息
- 批准号:9027011
- 负责人:
- 金额:$ 36.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-11 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AT Rich SequenceAcademiaAffectAreaAwardBindingBuffersChromosomesCollaborationsCommunitiesComplementComputer softwareDNADNA Sequence RearrangementDataData AnalysesDevicesElectrostaticsEngineeringEpigenetic ProcessEquilibriumEvolutionFluorescence MicroscopyFormulationFrequenciesGC Rich SequenceGene RearrangementGenetic RecombinationGenomeGenome MappingsGenomic DNAGenomicsGoalsGoldGrantGuanine + Cytosine CompositionHealthHigh-Throughput Nucleotide SequencingHistonesHumanHuman GenomeImmunoglobulin Variable RegionIonic StrengthsLabelLeadLengthMapsMeasurementMechanicsMethodologyMethodsMinnesotaMissionModalityModelingNational Human Genome Research InstituteNetropsinNucleotidesOrganismPatternPerformancePolymersPropertyPublic HealthPublishingReadingResearchResearch Project GrantsResolutionStretchingSystemTechnologyTimeUniversitiesVariantWorkbasecancer diagnosiscancer genomecostexperimental analysisgenome sequencingimprovedinnovationinsightmulti-scale modelingnanochannelnew technologynext generationnext generation sequencingpathogenresearch studyscreeningsequencing platformsimulationsingle moleculetheoriestool
项目摘要
DESCRIPTION: Genomic variability arises at a range of scales, from single nucleotides to entire chromosomes. Structural variations, such as translocations and inversions, typically involve rearrangements of tens of kilobase pairs to megabase pairs of DNA. While next-generation sequencing has revolutionized many areas of genomics, it has had less impact on the analysis of structural variations due to short read lengths. Similar issues arise when sequencing is used for cancer diagnosis, owing to the structural complexity of cancer genomes. Thus, a pressing need exists for genome mapping technologies that provide large-scale genomic information (millions of bases) that complements the gold standard generated on the Illumina short-read sequencing platform (hundreds of bases). In the first three-year period of this
R01 award, the University of Minnesota and BioNano Genomics have been collaborating to establish the fundamental basis for one such technology: genome mapping in nanochannels arrays. Genome mapping in nanochannel arrays works with massive intact genomic DNA molecules, up to almost a megabase in size, that have been "barcoded" with sequence-specific labels. These barcoded molecules are extended by confinement in a 45 nm nanochannel, and the barcode is read by fluorescence microscopy. To date, we have developed a comprehensive understanding of the thermal fluctuations of the labeled DNA, which set the lower bound on the measurement error, as well as a suite of tools that allow us to detect (and predict) physical rearrangement of DNA in the nanochannel. The next three- year period of this award builds on our advances to accomplish two new Specific Aims. Specific Aim 1 moves beyond homopolymer models of DNA to incorporate sequence-dependent micromechanics into the engineering models for both prediction of device performance and analysis of experimental data. The corresponding experiments open up a new measurement modality that (i) associates structural variations with GC content without requiring the genome sequence and (ii) better resolves regions of the genome where the nicking barcodes are similar. Specific Aim 2 will lead to improved device performance by tuning the buffer composition to optimize the balance between measurement resolution and throughput. In completing these SAs, we will continue the innovative engineering of genome mapping technologies from the first grant period, where we leverage the unique capabilities of both teams to advance our fundamental understanding of confined polymers while providing an engineering basis for the emerging genome mapping technology and developing new functionalities for genome mapping. In addition to publishing fundamental results, this project will impact the community at large through incorporation of any advances in genome mapping technology in the next-generation products from BioNano Genomics and the public release of DNA simulation and data analysis software arising from the project.
描述:基因组变异性出现在一系列尺度上,从单个核苷酸到整个染色体。结构变异,如易位和倒位,通常涉及数十个DNA酶对重排为DNA的兆碱基对。虽然下一代测序已经彻底改变了基因组学的许多领域,但由于读取长度短,它对结构变异的分析影响较小。由于癌症基因组的结构复杂性,当测序用于癌症诊断时也会出现类似的问题。因此,迫切需要提供大规模基因组信息(数百万个碱基)的基因组作图技术,以补充在Illumina短读测序平台上生成的金标准(数百个碱基)。在第一个三年期间,
R01奖,明尼苏达大学和BioNano Genomics一直在合作建立这样一种技术的基本基础:纳米通道阵列中的基因组图谱。纳米通道阵列中的基因组映射与大量完整的基因组DNA分子一起工作,这些分子的大小几乎达到百万碱基,已经用序列特异性标签进行了“条形码化”。这些条形码化分子通过限制在45 nm纳米通道中而延伸,并且通过荧光显微镜读取条形码。到目前为止,我们已经对标记DNA的热波动有了全面的了解,这设置了测量误差的下限,以及一套工具,使我们能够检测(和预测)纳米通道中DNA的物理重排。该奖项的下一个三年期建立在我们的进步,以实现两个新的具体目标。具体目标1超越DNA的均聚物模型,将序列依赖性微观力学纳入工程模型,用于预测器件性能和分析实验数据。相应的实验开辟了一种新的测量模式,其(i)将结构变异与GC含量相关联而不需要基因组序列,以及(ii)更好地解析其中切口条形码相似的基因组区域。具体目标2将通过调整缓冲液成分来优化测量分辨率和吞吐量之间的平衡,从而提高设备性能。在完成这些SA的过程中,我们将从第一个资助期开始继续基因组作图技术的创新工程,在此期间,我们利用两个团队的独特能力来推进我们对受限聚合物的基本理解,同时为新兴的基因组作图技术提供工程基础,并开发基因组作图的新功能。除了发表基本成果外,该项目还将通过将基因组作图技术的任何进展纳入BioNano Genomics的下一代产品以及公开发布该项目产生的DNA模拟和数据分析软件来影响整个社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin D Dorfman其他文献
Kevin D Dorfman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin D Dorfman', 18)}}的其他基金
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
- 批准号:
10175515 - 财政年份:2021
- 资助金额:
$ 36.05万 - 项目类别:
Tunable, narrow molecular weight distribution DNA for nanopore sequencing
用于纳米孔测序的可调窄分子量分布 DNA
- 批准号:
10412055 - 财政年份:2021
- 资助金额:
$ 36.05万 - 项目类别:
Isolation of long DNA for next-generation genomics applications
分离长 DNA 以用于下一代基因组学应用
- 批准号:
9302912 - 财政年份:2017
- 资助金额:
$ 36.05万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
8018171 - 财政年份:2010
- 资助金额:
$ 36.05万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
8214689 - 财政年份:2010
- 资助金额:
$ 36.05万 - 项目类别:
Rational Engineering of Nanopost Arrays for DNA Electrophoresis
DNA 电泳纳米柱阵列的合理工程
- 批准号:
7762906 - 财政年份:2010
- 资助金额:
$ 36.05万 - 项目类别:
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 36.05万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 36.05万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 36.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 36.05万 - 项目类别: