Novel Fast Imaging and Reconstruction Strategies for Dynamic MRI

动态 MRI 的新型快速成像和重建策略

基本信息

  • 批准号:
    7872043
  • 负责人:
  • 金额:
    $ 7.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this research project is to develop new, ultra-fast methods for dynamic imaging applications to enable greater clinical utility in the future. We intend to meet this goal by combining several existing image reconstruction methods, namely parallel imaging and non-Cartesian trajectories, to generate novel fast acquisition methods. Our current research involves the use of radial trajectories, as opposed to the standard, rectilinear trajectory, to acquire highly accelerated datasets in a very short time. These data can then be reconstructed using a special formulation of a parallel imaging method known as GRAPPA in order to reconstruct error-free images. Using this technique, we have acquired images with a temporal resolution of 60ms. We plan to expand this concept to trajectories which have the potential for even fast data acquisition, namely spiral and anisotropic field-of-view trajectories. Using these methods, we believe that it will be possible to generate images in less than 40ms, which will allow the acquisition real-time, free-breathing cardiac images, making EKG gating and breath holding unnecessary for cardiac function exams. In order to make these reconstructions possible in a clinically acceptable timeframe, they will be implemented on a GPU platform, which will reduce the reconstruction time from minutes to seconds. In the independent phase of the project, the GPU platform will be exploited in order to investigate different constrained reconstruction methods for MRI data. In addition to parallel imaging and non-Cartesian acquisitions, these techniques which include compressed sensing have also emerged as a new and important category of possible fast imaging methods. Early work has demonstrated an up to 20-fold reduction in data, and thus time, needed for an image. The power of these methods is obvious, although it is not yet clear if they will be viable in a clinical setting, due to, for instance, incredibly long computation times (sometimes up to days). Thus based on our experience in the first stage of this proposal, the independent portion of this project will explore the potential of these constrained reconstruction methods and examines the possibility of combining them with the non- Cartesian parallel imaging methods developed in the earlier phase. The rapid computational platform, in the form of the GPU implementations, will allow these novel image reconstruction techniques to be vigorously tested, paving the way for these methods to become practical for widespread clinical use. PUBLIC HEALTH RELEVANCE: While magnetic resonance imaging (MRI) is in widespread clinical use because of its sensitivity to a broad range of diseases, the relatively slow acquisition of MRI data limits its applicability to many dynamic imaging situations such as cardiac imaging or MR angiography. The goal of this project is to develop image reconstruction techniques for ultra-fast MRI imaging using a combination of novel acquisition and signal processing methods. Rapid computing using GPU implementations of these techniques will allow the reconstructions to take place in a matter of seconds, allowing this technology to be implemented in a clinical setting. These methods will revolutionize the acquisition and reconstruction of dynamic MRI data.
描述(由申请人提供):该研究项目的目标是为动态成像应用开发新的超快速方法,以在未来实现更大的临床实用性。我们打算通过结合几种现有的图像重建方法(即并行成像和非笛卡尔轨迹)来生成新颖的快速采集方法来实现这一目标。我们当前的研究涉及使用径向轨迹,而不是标准的直线轨迹,在很短的时间内获取高度加速的数据集。然后可以使用称为 GRAPPA 的并行成像方法的特殊公式来重建这些数据,以便重建无错误的图像。使用这种技术,我们获得了时间分辨率为 60 毫秒的图像。我们计划将这一概念扩展到具有快速数据采集潜力的轨迹,即螺旋和各向异性视场轨迹。使用这些方法,我们相信可以在不到 40 毫秒的时间内生成图像,这将允许采集实时、自由呼吸的心脏图像,使得心功能检查不需要心电图门控和屏气。为了使这些重建在临床可接受的时间范围内成为可能,它们将在 GPU 平台上实施,这将使重建时间从几分钟缩短到几秒钟。 在项目的独立阶段,将利用GPU平台来研究MRI数据的不同约束重建方法。除了并行成像和非笛卡尔采集之外,包括压缩感知在内的这些技术也已成为可能的快速成像方法的新的重要类别。早期研究表明,图像所需的数据量和时间减少了 20 倍。这些方法的威力是显而易见的,尽管目前还不清楚它们在临床环境中是否可行,例如由于计算时间非常长(有时长达数天)。因此,根据我们在该提案第一阶段的经验,该项目的独立部分将探索这些约束重建方法的潜力,并研究将它们与早期阶段开发的非笛卡尔并行成像方法相结合的可能性。 GPU 实现形式的快速计算平台将使这些新颖的图像重建技术得到大力测试,为这些方法在临床上的广泛应用铺平道路。 公共健康相关性:虽然磁共振成像 (MRI) 由于其对多种疾病的敏感性而在临床上得到广泛应用,但 MRI 数据采集速度相对较慢,限制了其在许多动态成像情况(例如心脏成像或 MR 血管造影)中的适用性。该项目的目标是结合新颖的采集和信号处理方法,开发超快 MRI 成像的图像重建技术。使用这些技术的 GPU 实现的快速计算将使重建在几秒钟内完成,从而使该技术能够在临床环境中实施。这些方法将彻底改变动态 MRI 数据的采集和重建。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(9)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Seiberlich其他文献

Nicole Seiberlich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Seiberlich', 18)}}的其他基金

Exploration of Ultrasound-Activated Bubbles as a Switchable MRI Contrast Agent
超声激活气泡作为可切换 MRI 造影剂的探索
  • 批准号:
    10171844
  • 财政年份:
    2020
  • 资助金额:
    $ 7.18万
  • 项目类别:
Exploration of Ultrasound-Activated Bubbles as a Switchable MRI Contrast Agent
超声激活气泡作为可切换 MRI 造影剂的探索
  • 批准号:
    10042061
  • 财政年份:
    2020
  • 资助金额:
    $ 7.18万
  • 项目类别:
Novel Fast Imaging and Reconstruction Strategies for Dynamic MRI
动态 MRI 的新型快速成像和重建策略
  • 批准号:
    8035353
  • 财政年份:
    2010
  • 资助金额:
    $ 7.18万
  • 项目类别:
Novel Fast Imaging and Reconstruction Strategies for Dynamic MRI
动态 MRI 的新型快速成像和重建策略
  • 批准号:
    8399722
  • 财政年份:
    2010
  • 资助金额:
    $ 7.18万
  • 项目类别:
Novel Fast Imaging and Reconstruction Strategies for Dynamic MRI
动态 MRI 的新型快速成像和重建策略
  • 批准号:
    8596817
  • 财政年份:
    2010
  • 资助金额:
    $ 7.18万
  • 项目类别:
Novel Fast Imaging and Reconstruction Strategies for Dynamic MRI
动态 MRI 的新型快速成像和重建策略
  • 批准号:
    8387483
  • 财政年份:
    2010
  • 资助金额:
    $ 7.18万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 7.18万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了