Derived Equivalences, Braid Relations, and Stability Conditions

导出等价、辫状关系和稳定性条件

基本信息

  • 批准号:
    GR/T00917/02
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Representation theory is the mathematical study of symmetry and of the various ways symmetry manifests itself in nature. A wonderful blend of algebra, geometry, and combinatorics, it enjoys fruitful interactions with physics and chemistry.The proposed research introduces a completely new approach to some fundamental unsolved problems in representation theory, based on modern methods of derived equivalences developed in the recent proof of Broue's conjecture for symmetric groups. This approach applies in particular to Lusztig's famous and influential conjecture on characters of irreducible modules for general linear groups in prime characterisctic, which has inspired major advances in mathematics even outside representation theory proper and continues to be a subject of intense study.The first part of the research concerns extensions and applications of the derived equivalence methods in several directions, including a proof of Broue's conjecture for general linear groups in nondefining characteristic and, most significantly, a uniform proof of the existence of braid group actions on derived categories in a variety of Lie-type representation theories. The braid group actions should provide a foundation around which to build a deeper understanding of the whole family of theories.Thanks to the work on Broue's conjecture mentioned above, the famous numerical conjectures of Lusztig and James can be reformulated in terms of some small and manageable wreath products. In order to exploit this surprising connection, the second part of the research investigates homological properties of these wreath products, using the braid relations appearing in the first part together with an exciting new idea coming from mathematical physics, the stability conditions of Bridgeland and Douglas.
表示论是对对称性和对称性在自然界中表现的各种方式的数学研究。一个奇妙的融合代数,几何和组合学,它享有丰富的互动与物理和chemical.The拟议的研究介绍了一个全新的方法来解决一些基本的未解决的问题表示论,基于现代方法的衍生等价在最近的证明Broue的猜想对称群。这种方法特别适用于Lusztig关于一般线性群的不可约模的特征标的著名的和有影响力的猜想,该猜想激发了数学的重大进展,甚至在表示论本身之外,并且仍然是一个深入研究的主题。包括证明Broue的猜想一般线性群在非定义的特点,最重要的是,一个统一的证明存在的辫子群行动的衍生类别在各种李型表示理论。辫子群作用应该提供一个基础,围绕它建立一个更深入的理解整个家庭的theors.Thanks工作Broue的猜想上面提到的,著名的数值计算Lusztig和詹姆斯可以重新制定的一些小的和可管理的花圈产品。为了利用这一惊人的联系,研究的第二部分调查这些花环产品的同调属性,使用辫子关系出现在第一部分连同一个令人兴奋的新想法来自数学物理,稳定条件的Bridgeland和道格拉斯。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L-infinity maps and twistings
L-无穷大映射和扭曲
Parallelotope tilings and q-decomposition numbers
平行位图平铺和 q 分解数
  • DOI:
    10.1016/j.aim.2017.09.024
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chuang J
  • 通讯作者:
    Chuang J
Canonical bases for Fock spaces and tensor products
福克空间和张量积的规范基
  • DOI:
    10.1016/j.aim.2016.07.008
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chuang J
  • 通讯作者:
    Chuang J
Combinatorics and Formal Geometry of the Maurer-Cartan Equation
Maurer-Cartan 方程的组合学和形式几何
Abstract Hodge Decomposition and Minimal Models for Cyclic Algebras
循环代数的抽象Hodge分解和最小模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Chuang其他文献

Joseph Chuang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Chuang', 18)}}的其他基金

Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T030771/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Derived Localisation in Algebra and Homotopy Theory
代数和同伦理论中的导出局域化
  • 批准号:
    EP/N016505/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Homological algebra of Feynman graphs
费曼图的同调代数
  • 批准号:
    EP/J00877X/1
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grant

相似海外基金

Derived equivalences and autoequivalences in algebraic geometry
代数几何中的导出等价和自等价
  • 批准号:
    EP/X01066X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Orbit Equivalences in Borel Dynamics
Borel Dynamics 中的轨道等效
  • 批准号:
    2153981
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
  • 批准号:
    20K03506
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotopical Coalgebras, Algebraic Models, and Realizing Derived Equivalences
同伦余代数、代数模型和实现导出等价
  • 批准号:
    1811278
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Higher Representations and Derived Equivalences
更高的表示和派生等价
  • 批准号:
    1702305
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Studies of tilting mutation theory and derived equivalences
倾斜突变理论及其衍生等价的研究
  • 批准号:
    15K17516
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Derived equivalences and Gorenstein dimension
导出等价和 Gorenstein 维数
  • 批准号:
    26887034
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Behavioural Equivalences: Environmental Aspects, Metrics and Generic Algorithms (BEMEGA)
行为等效:环境方面、指标和通用算法 (BEMEGA)
  • 批准号:
    260261790
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cohomological and singularity invariants via Hodge modules and derived equivalences
通过 Hodge 模和导出等价的上同调和奇点不变量
  • 批准号:
    1405516
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coinduction Meets Algebra for the Axiomatization and Algorithmics of System Equivalences
共导与代数相结合,实现系统等价的公理化和算法
  • 批准号:
    259234802
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了