Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
基本信息
- 批准号:8009750
- 负责人:
- 金额:$ 8.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-03 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAdsorptionAlloysAntibodiesArtificial nanoparticlesAwardBehaviorBindingBiologicalBiotinBloodBlood CirculationCancer BiologyCaveolaeCellsChemicalsChemistryColorComplexCrowdingDataDevelopmentDiffusionDrug Delivery SystemsDrug FormulationsElectronicsEngineeringEnsureEnvironmentExhibitsFluorescenceFluorescent DyesFluorescent ProbesGenerationsGoalsHistidineHumanImageInterdisciplinary StudyLeadLengthLigandsMalignant NeoplasmsMechanicsMediatingMedicineMentorsMetalsMicroscopicMicroscopyModelingNanotechnologyNeoplasms in Vascular TissueOpticsPenetrationPeptidesPharmaceutical PreparationsPharmacotherapyPhasePostdoctoral FellowProcessPropertyProteinsPumpQuantum DotsRecombinant ProteinsResearchResearch InstituteResearch PersonnelResearch Project GrantsResearch ProposalsResistanceSemiconductorsSeriesSerum ProteinsSiteSolid NeoplasmStreptavidinSurfaceSurface PropertiesSystemTechniquesTechnologyTherapeuticTimeTissuesTrainingTransport ProcessTreatment EfficacyUniversitiesWorkaerobic respiration control proteinbasecancer imagingclinical applicationclinically significantdesignefficacy researchimprovedin vivointerstitialintravital microscopymacromoleculemalignant breast neoplasmmolecular/cellular imagingnanocrystalnanoparticlenext generationnovelparticleprotein aminoacid sequencepublic health relevancequantumresearch studyself assemblysingle moleculesurface coatingtargeted deliverytranscytosistumoruptake
项目摘要
DESCRIPTION (provided by applicant): The aim of this research proposal is to develop a new class of fluorescent nanoparticles for highly sensitive and multicolor imaging of the tumor microenvironment in vivo toward understanding and improving nanoparticle drug delivery. We will focus on semiconductor quantum dots (QDs), which are nanocrystals that exhibit bright fluorescence and unique optical and electronic properties. We have recently designed a new class of quantum dots called 'alloyed quantum wells,' which have equalized fluorescence brightness across a broad spectrum of colors. This novel property is not available from organic dyes, fluorescent proteins, or conventional quantum dots, and will enable quantitative studies of nanoparticle drug delivery to solid tumors. The basic idea is that we can modify the size, surface chemistry, or targeting ligands on these multicolor probes to model nanoparticle drug formulations, which can then be quantitatively compared for uptake and penetration in solid tumors. Because these particles are immensely bright on the single molecule level, intravital microscopy of solid tumors will allow a single-molecule, mechanistic understanding of the rate-limiting steps of drug delivery in a multicolor fashion. This simultaneous multicolor approach is critical for comparisons in the heterogeneous tumor microenvironment, and is not possible with conventional optical probes. In this proposal, we will optically engineer these nanoparticles, develop inert surface coatings for compact sizes and long circulation times in blood, and develop new high-precision bioconjugation strategies based on self-assembly principles. We will use these new probes to image the microscopic processes of targeted-delivery to tumors, concentrating on caveolae-mediated transcytosis, an active transport process that has recently been shown to efficiently pump nanoparticles from the tumor blood vessels into the interstitial tissue. These studies will implement highly relevant orthotopic models of human breast cancer that will ensure clinical significance of the findings. During the mentored phase of this award, the candidate will be co-mentored by Dr. Shuming Nie of Emory University and Dr. Jan Schnitzer of the Proteogenomic Research Institute for Systems Medicine, and will be trained in the use of orthotopic models of human cancer, intravital microscopy techniques, and antibody-based tumor targeting strategies. Both of these mentors are leaders in their respective fields of nanotechnology and cancer biology, which will enable a convergence of expertise to guide this interdisciplinary research project and to facility the transition of the candidate from a mentored postdoctoral fellow to an independent investigator in an academic setting.
PUBLIC HEALTH RELEVANCE: Nanoparticle-based drugs are a promising therapeutic approach for cancer, however our ability to rationally and optimally design these particles is currently limited by a poor understanding of their behavior in tumors. In this proposal, we will develop a new class of fluorescent nanoparticle probes that will enable highly sensitive, quantitative, single-molecule imaging and tracking of nanoparticles in cancer tissue. We will use these probes to understand the mechanisms of targeted nanoparticle delivery to tumors to inform design parameters that will enhance tumor uptake and therapeutic efficacy.
描述(由申请人提供):本研究提案的目的是开发一类新的荧光纳米颗粒,用于体内肿瘤微环境的高灵敏度和可重复成像,以了解和改善纳米颗粒药物递送。我们将专注于半导体量子点(QD),这是纳米晶体,表现出明亮的荧光和独特的光学和电子特性。我们最近设计了一种新的量子点,称为“合金量子威尔斯”,它可以在很宽的光谱范围内均衡荧光亮度。这种新的特性是有机染料,荧光蛋白或传统量子点所无法获得的,并且将使纳米颗粒药物递送到实体肿瘤的定量研究成为可能。其基本思想是,我们可以修改尺寸,表面化学,或靶向配体对这些纳米粒子探针模型的药物制剂,然后可以定量比较吸收和渗透在实体肿瘤。由于这些颗粒在单分子水平上非常明亮,因此实体瘤的活体显微镜将允许对药物递送的限速步骤进行单分子机械理解。这种同时检测的方法对于异质性肿瘤微环境中的比较至关重要,并且不可能使用传统的光学探针。在这项提案中,我们将对这些纳米粒子进行光学工程设计,开发出尺寸紧凑、血液循环时间长的惰性表面涂层,并开发出基于自组装原理的新型高精度生物结合策略。我们将使用这些新的探针来成像靶向递送到肿瘤的微观过程,集中在小窝介导的转胞吞作用,这是一种主动转运过程,最近已被证明可以有效地将纳米颗粒从肿瘤血管泵入间质组织。这些研究将实施高度相关的人类乳腺癌原位模型,以确保研究结果的临床意义。在该奖项的指导阶段,候选人将由埃默里大学的Shuming Nie博士和系统医学蛋白基因组研究所的Jan Schnitzer博士共同指导,并将接受人类癌症原位模型,活体显微镜技术和基于抗体的肿瘤靶向策略的使用培训。这两位导师都是纳米技术和癌症生物学各自领域的领导者,这将使专业知识的融合能够指导这个跨学科的研究项目,并促进候选人从受指导的博士后研究员过渡到学术环境中的独立研究员。
公共卫生相关性:基于纳米颗粒的药物是一种很有前途的癌症治疗方法,但我们合理和最佳设计这些颗粒的能力目前受到对其在肿瘤中行为的理解不足的限制。在这项提案中,我们将开发一类新的荧光纳米粒子探针,这将使癌症组织中的纳米粒子的高灵敏度,定量,单分子成像和跟踪成为可能。我们将使用这些探针来了解靶向纳米颗粒递送到肿瘤的机制,以告知将增强肿瘤摄取和治疗功效的设计参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Michael Smith其他文献
Andrew Michael Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Michael Smith', 18)}}的其他基金
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10317961 - 财政年份:2021
- 资助金额:
$ 8.67万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10450143 - 财政年份:2021
- 资助金额:
$ 8.67万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10597685 - 财政年份:2021
- 资助金额:
$ 8.67万 - 项目类别:
Advanced Molecular Probes and Cell Engineering Tools for Accurate Single-Molecule Analysis of Signaling in Individual Cells
用于对单个细胞信号传导进行精确单分子分析的先进分子探针和细胞工程工具
- 批准号:
10363683 - 财政年份:2019
- 资助金额:
$ 8.67万 - 项目类别:
Daily Quantification of Cancer-Associated Exosomal miRNA in Patient Blood by Photonic Crystal-Enhanced Quantum Dot Emission
通过光子晶体增强量子点发射对患者血液中癌症相关外泌体 miRNA 进行每日定量
- 批准号:
9899743 - 财政年份:2018
- 资助金额:
$ 8.67万 - 项目类别:
Targeted Drug Delivery to Adipose Tissue Macrophages in Obesity
肥胖症中脂肪组织巨噬细胞的靶向药物递送
- 批准号:
9354476 - 财政年份:2016
- 资助金额:
$ 8.67万 - 项目类别:
Targeted Drug Delivery to Adipose Tissue Macrophages in Obesity
肥胖症中脂肪组织巨噬细胞的靶向药物递送
- 批准号:
9763348 - 财政年份:2016
- 资助金额:
$ 8.67万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8137827 - 财政年份:2010
- 资助金额:
$ 8.67万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8547022 - 财政年份:2010
- 资助金额:
$ 8.67万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8466012 - 财政年份:2010
- 资助金额:
$ 8.67万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Grant-in-Aid for Scientific Research (S)