Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
基本信息
- 批准号:8466012
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-03 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active Biological TransportAdsorptionAlloysAntibodiesArtificial nanoparticlesAwardBehaviorBindingBiologicalBiotinBloodBlood CirculationCancer BiologyCaveolaeCellsChemicalsChemistryColorComplexCrowdingDataDevelopmentDiffusionDrug Delivery SystemsDrug FormulationsElectronicsEngineeringEnsureEnvironmentExhibitsFluorescenceFluorescent DyesFluorescent ProbesGenerationsGoalsHistidineHumanImageInterdisciplinary StudyLeadLengthLigandsMalignant NeoplasmsMechanicsMediatingMedicineMentorsMetalsMicroscopicMicroscopyModelingNanotechnologyNeoplasms in Vascular TissueOpticsPenetrationPeptidesPharmaceutical PreparationsPharmacotherapyPhasePostdoctoral FellowProcessPropertyProteinsPumpQuantum DotsRecombinant ProteinsResearchResearch InstituteResearch PersonnelResearch Project GrantsResearch ProposalsResistanceSemiconductorsSeriesSerum ProteinsSiteSolid NeoplasmStreptavidinSurfaceSurface PropertiesSystemTechniquesTechnologyTherapeuticTimeTissuesTrainingTransport ProcessTreatment EfficacyUniversitiesWorkaerobic respiration control proteinbasecancer imagingclinical applicationclinically significantdesignimprovedin vivointerstitialintravital microscopymacromoleculemalignant breast neoplasmmolecular/cellular imagingnanocrystalnanoparticlenext generationnovelparticleprotein aminoacid sequencequantumresearch studyself assemblysingle moleculesurface coatingtargeted deliverytranscytosistumoruptake
项目摘要
Project Summary
The aim of this research proposal is to develop a new class of fluorescent nanoparticles for highly sensitive
and multicolor imaging of the tumor microenvironment in vivo toward understanding and improving
nanoparticle drug delivery. We will focus on semiconductor quantum dots (QDs), which are nanocrystals that
exhibit bright fluorescence and unique optical and electronic properties. We have recently designed a new
class of quantum dots called 'alloyed quantum wells,' which have equalized fluorescence brightness across a
broad spectrum of colors. This novel property is not available from organic dyes, fluorescent proteins, or
conventional quantum dots, and will enable quantitative studies of nanoparticle drug delivery to solid tumors.
The basic idea is that we can modify the size, surface chemistry, or targeting ligands on these multicolor
probes to model nanoparticle drug formulations, which can then be quantitatively compared for uptake and
penetration in solid tumors. Because these particles are immensely bright on the single molecule level,
intravital microscopy of solid tumors will allow a single-molecule, mechanistic understanding of the rate-limiting
steps of drug delivery in a multicolor fashion. This simultaneous multicolor approach is critical for comparisons
in the heterogeneous tumor microenvironment, and is not possible with conventional optical probes. In this
proposal, we will optically engineer these nanoparticles, develop inert surface coatings for compact sizes and
long circulation times in blood, and develop new high-precision bioconjugation strategies based on self-
assembly principles. We will use these new probes to image the microscopic processes of targeted-delivery to
tumors, concentrating on caveolae-mediated transcytosis, an active transport process that has recently been
shown to efficiently pump nanoparticles from the tumor blood vessels into the interstitial tissue. These studies
will implement highly relevant orthotopic models of human breast cancer that will ensure clinical significance of
the findings. During the mentored phase of this award, the candidate will be co-mentored by Dr. Shuming Nie
of Emory University and Dr. Jan Schnitzer of the Proteogenomic Research Institute for Systems Medicine, and
will be trained in the use of orthotopic models of human cancer, intravital microscopy techniques, and antibody-
based tumor targeting strategies. Both of these mentors are leaders in their respective fields of
nanotechnology and cancer biology, which will enable a convergence of expertise to guide this interdisciplinary
research project and to facility the transition of the candidate from a mentored postdoctoral fellow to an
independent investigator in an academic setting.
项目摘要
这项研究计划的目的是开发一类新的荧光纳米颗粒,用于高灵敏度的
和肿瘤微环境的生物成像,以了解和改善
纳米颗粒药物递送。我们将关注半导体量子点(QD),这是纳米晶体,
显示出明亮的荧光和独特的光学和电学性质。我们最近设计了一个新的
这类量子点被称为“合金量子威尔斯”,其在整个量子点上具有均衡的荧光亮度。
颜色的光谱。这种新颖的性质是有机染料、荧光蛋白或
传统的量子点,并将使定量研究纳米颗粒药物输送到实体肿瘤。
基本的想法是,我们可以改变这些纳米颗粒的大小、表面化学性质或靶向配体,
探针来模拟纳米颗粒药物制剂,然后可以定量地比较纳米颗粒药物制剂的摄取和
在实体瘤中的渗透。因为这些粒子在单分子水平上非常明亮,
实体瘤的活体显微镜检查将允许对肿瘤的限速机制进行单分子的、机械的理解。
以一种快速的方式给药的步骤。这种同时进行的方法对于比较至关重要
在异质性肿瘤微环境中,这是常规光学探针无法实现的。在这
我们将对这些纳米粒子进行光学工程设计,开发紧凑尺寸的惰性表面涂层,
在血液中循环时间长,并开发新的高精度生物结合策略,
组装原则。我们将使用这些新的探针来成像靶向递送的微观过程,
肿瘤,集中在小窝介导的转胞吞,一个积极的运输过程,最近已被
显示出有效地将纳米颗粒从肿瘤血管泵入间质组织。这些研究
将实施高度相关的人类乳腺癌原位模型,以确保
调查结果在此奖项的指导阶段,候选人将由聂树明博士共同指导
和系统医学蛋白基因组研究所的Jan Schnitzer博士,
将接受使用人类癌症原位模型、活体显微镜技术和抗体的培训-
基于肿瘤靶向策略。这两位导师都是各自领域的领导者,
纳米技术和癌症生物学,这将使专业知识的融合,以指导这一跨学科的
研究项目和设施的候选人从一个指导博士后研究员过渡到一个
学术环境中的独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Michael Smith其他文献
Andrew Michael Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Michael Smith', 18)}}的其他基金
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10317961 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10450143 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10597685 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Advanced Molecular Probes and Cell Engineering Tools for Accurate Single-Molecule Analysis of Signaling in Individual Cells
用于对单个细胞信号传导进行精确单分子分析的先进分子探针和细胞工程工具
- 批准号:
10363683 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Daily Quantification of Cancer-Associated Exosomal miRNA in Patient Blood by Photonic Crystal-Enhanced Quantum Dot Emission
通过光子晶体增强量子点发射对患者血液中癌症相关外泌体 miRNA 进行每日定量
- 批准号:
9899743 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
Targeted Drug Delivery to Adipose Tissue Macrophages in Obesity
肥胖症中脂肪组织巨噬细胞的靶向药物递送
- 批准号:
9354476 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Targeted Drug Delivery to Adipose Tissue Macrophages in Obesity
肥胖症中脂肪组织巨噬细胞的靶向药物递送
- 批准号:
9763348 - 财政年份:2016
- 资助金额:
$ 24.9万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8137827 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8009750 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
Next-Generation Quantum Dots for Molecular and Cellular Imaging of Cancer
用于癌症分子和细胞成像的下一代量子点
- 批准号:
8689972 - 财政年份:2010
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant