How do magnetic interactions in nanoscale intergrowths affect palaeomagnetic interpretations?

纳米级共生体中的磁相互作用如何影响古地磁解释?

基本信息

  • 批准号:
    NE/D002036/1
  • 负责人:
  • 金额:
    $ 54.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

We are all familiar with the experiment where we place a piece of paper on top of a bar magnet and image the magnetic field by sprinkling iron filings on to the paper. The iron filings align with the magnetic field of the magnet, tracing out the well-known dipole field pattern. In this type of experiment the magnetic particles are free to move toward the high field regions. If the particles had been glued to the paper so that they could not move, then the magnetisation within the particles would have moved instead. In fact the magnetisation within the particles would rotate to align with the direction field of the magnet, but of course this rotation would not have been visible to the eye. The ability of the magnetisation within a particle to align with a magnetic field and remain aligned even if we remove the original magnetising field, means the particles are able to produce a permanent record of the field direction. This recording capability of small magnetic particles has been exploited by man for over 50 years, and used, for example, in magnetic tape recorders and for hard drive computer storage. In both tapes and drives the recording media consists of a thin film coated with a fine power of magnetic particles. Such technology allows computer drives to store huge amounts of data which can be deleted and recorded time and time again, but this high reliability can only be achieved by ensuring that all the magnetic particles are of a consistent grain size and chemical purity. Magnetic particles are not just man-made, but also occur naturally in most rocks and soils. Unlike man-made recording media, however, these naturally occurring magnetic minerals can have a wide variety of chemical compositions, grain sizes, and particle concentrations. In some cases these magnetic minerals will contain zones within a single grain with each zone having a slightly different chemical structure. These distinct magnetic minerals will develop in response to environmental conditions at the time when the rocks or soils are formed. For example, lavas thrown out from the same volcano can produce different magnetic minerals depending on how slowly the lavas cool, and soils will contain different magnetic minerals depending on the amount of organic material present. Being able to correctly identify the type of magnetic mineralogy, therefore, can tell us something about the environment in which that sample was formed. Accurate identification of the magnetic minerals is important for another reason. Natural magnetic minerals will record the direction of the Earth's magnetic field as the minerals are formed. However, the reliability of the recording will greatly depend upon the types of magnetic minerals that are present. It is possible that the direction of magnetisation in some minerals is more influenced by the crystalline structure of the mineral itself rather than the geomagnetic field. This is thought to be likely in the case when a magnetic grain is chemically zoned, as mentioned earlier. It is therefore important to understand how different multi-zoned grains are able to make a magnetic recording, and develop simple tests to distinguish which mineral systems are reliable recorders of the geomagnetic field, and which are not.
我们都熟悉这样的实验,我们把一张纸放在条形磁铁的顶部,然后通过在纸上洒上铁屑来成像磁场。铁屑与磁铁的磁场对齐,描绘出众所周知的偶极磁场模式。在这种类型的实验中,磁性粒子可以自由地向高场区域移动。如果粒子被粘在纸上,所以它们不能移动,那么粒子内部的磁化作用就会移动。事实上,粒子内部的磁化作用会旋转,以与磁铁的方向磁场对齐,但当然,这种旋转是肉眼看不到的。粒子内的磁化作用能够与磁场对准并保持对准,即使我们移除原始的磁化磁场,这意味着粒子能够产生磁场方向的永久记录。这种小磁性颗粒的记录能力已经被人类开发了50多年,并用于例如磁带记录器和硬盘驱动器计算机存储。在磁带和驱动器中,记录介质都由一层涂有细微磁性颗粒的薄膜组成。这种技术允许计算机驱动器存储大量数据,这些数据可以一次又一次地删除和记录,但这种高可靠性只能通过确保所有磁性颗粒具有一致的颗粒大小和化学纯度才能实现。磁性颗粒不仅是人造的,而且在大多数岩石和土壤中也是自然存在的。然而,与人造记录介质不同的是,这些自然产生的磁性矿物可以具有各种各样的化学成分、颗粒大小和颗粒浓度。在某些情况下,这些磁性矿物将包含单个颗粒内的区域,每个区域的化学结构略有不同。当岩石或土壤形成时,这些独特的磁性矿物会随着环境条件的变化而发展。例如,从同一座火山喷出的熔岩可以产生不同的磁性矿物,这取决于熔岩冷却的速度,土壤中含有不同的磁性矿物,这取决于存在的有机物质的数量。因此,能够正确识别磁性矿物学的类型可以告诉我们一些关于样品形成环境的信息。准确识别磁性矿物还有另一个重要原因。天然磁性矿物将在矿物形成时记录地球磁场的方向。然而,记录的可靠性将在很大程度上取决于存在的磁性矿物的类型。某些矿物的磁化方向可能更多地受矿物本身的晶体结构影响,而不是受地磁场的影响。如前所述,当磁性颗粒被化学分区时,这被认为是可能的。因此,重要的是要了解不同的多带颗粒如何能够进行磁记录,并开发简单的测试来区分哪些矿物系统是可靠的地磁场记录器,哪些不是。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia MAGNETIC PROPERTIES OF ILMENITE-HEMATITE
不列颠哥伦比亚省鲁珀特王子港附近 Ecstall 岩体中钛铁矿-赤铁矿单晶的磁性 钛铁矿-赤铁矿的磁性
The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite
  • DOI:
    10.2138/am.2009.2989
  • 发表时间:
    2009-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    T. Kasama;R. Dunin‐Borkowski;T. Asaka;R. Harrison;R. Chong;S. McEnroe;E. Simpson;Y. Matsui;A. Putnis
  • 通讯作者:
    T. Kasama;R. Dunin‐Borkowski;T. Asaka;R. Harrison;R. Chong;S. McEnroe;E. Simpson;Y. Matsui;A. Putnis
Visualized Effects of Oxidation and Temperature on Vortex-State Fe3O4 Particles Examined by Environmental TEM and Off-Axis Electron Holography
通过环境 TEM 和离轴电子全息术检查氧化和温度对涡旋态 Fe3O4 颗粒的可视化影响
  • DOI:
    10.1017/s143192761800524x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Almeida T
  • 通讯作者:
    Almeida T
Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces
  • DOI:
    10.2138/am.2009.3167
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Galindo-Gonzalez, Cecilia;Feinberg, Joshua M.;Dunin-Borkowski, Rafal E.
  • 通讯作者:
    Dunin-Borkowski, Rafal E.
Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: electron holography and Lorentz microscopy
  • DOI:
    10.1080/01411594.2012.695373
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kasama, Takeshi;Harrison, Richard J.;Dunin-Borkowski, Rafal E.
  • 通讯作者:
    Dunin-Borkowski, Rafal E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wyn Williams其他文献

Micromagnetic determination of the FORC response of paleomagnetically significant magnetite assemblages
具有古地磁意义的磁铁矿组合的 FORC 响应的微磁测定
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Nagy;Roberto Moreno;A. Muxworthy;Wyn Williams;Greig A. Paterson;Lisa Tauxe;Miguel A. Valdez;San Diego;Instituto Mexicano;del Petroleo;Gustavo A. Madero;Mexico;Roberto Moreno Ortega
  • 通讯作者:
    Roberto Moreno Ortega
Atomistic calculation of the f0 attempt frequency in Fe3O4 magnetite nanoparticles
Fe3O4 磁铁矿纳米颗粒中 f0 尝试频率的原子计算
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roberto Moreno;Sarah Jenkins;Wyn Williams;Richard F. L. Evans
  • 通讯作者:
    Richard F. L. Evans
A very strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism
磁小体链磁性的强烈角度依赖性:对岩石磁性和古地磁的影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Jinhua Li;Kunpeng Ge;Yongxin Pan;Wyn Williams;Qingsong Liu;Huafeng Qin
  • 通讯作者:
    Huafeng Qin
Micromagnetic Modeling of Magnetite/Maghemite Particles with a Multi-Layer Core-Shelled Structure
  • DOI:
    10.4028/www.scienific.net/MSF.1013.9
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Kunpeng Ge;Wyn Williams
  • 通讯作者:
    Wyn Williams
Micromagnetic Modeling of a Magnetically Unstable Zone and Its Geological Significances
磁不稳定区的微磁模拟及其地质意义
  • DOI:
    10.1029/2022jb024876
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuqin Wang;Kunpeng Ge;Wyn Williams;Hui Zhou;Huapei Wang;Lesleis Nagy;Lisa Tauxe;Jiang Wang;Shengbo Liu;Yang Liu
  • 通讯作者:
    Yang Liu

Wyn Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wyn Williams', 18)}}的其他基金

MicroPI: A micromagnetic approach to absolute palaeointensity determinations
MicroPI:绝对古强度测定的微磁方法
  • 批准号:
    NE/Z000068/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Transforming understanding of paleomagnetic recording: Insights from experimental observations and numerical predictions
NSFGEO-NERC:转变对古地磁记录的理解:实验观察和数值预测的见解
  • 批准号:
    NE/S011978/1
  • 财政年份:
    2018
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Predicting the reliability with which the geomagnetic field can be recorded in igneous rocks
预测火成岩中记录地磁场的可靠性
  • 批准号:
    NE/J020966/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
The effect of chemical alteration on the fidelity of palaeomagnetic pseudo-single-domain recorders
化学蚀变对古地磁伪单域记录器保真度的影响
  • 批准号:
    NE/H006508/1
  • 财政年份:
    2010
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Fundamental Magnetic Constants and Palaeomagnetic Recording Fidelity of Greigite (Fe3S4)
硅镁石 (Fe3S4) 的基本磁常数和古磁记录保真度
  • 批准号:
    NE/G003319/1
  • 财政年份:
    2009
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
Micrormagnetic modelling of naturally occurring mineral systems.
天然矿物系统的微磁建模。
  • 批准号:
    EP/F011113/1
  • 财政年份:
    2007
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How do Density, Feedback, Gas Dynamics, and Magnetic Fields affect Star Formation within Clusters?
密度、反馈、气体动力学和磁场如何影响星团内的恒星形成?
  • 批准号:
    RGPIN-2022-04516
  • 财政年份:
    2022
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Discovery Grants Program - Individual
How do neurons coordinate alternative energy sources to meet the demands of computation?
神经元如何协调替代能源以满足计算需求?
  • 批准号:
    10606195
  • 财政年份:
    2022
  • 资助金额:
    $ 54.41万
  • 项目类别:
Thermochemical remanent magnetisations: How do they affect ancient magnetic field intensities from the Earth and Solar System?
热化学剩磁:它们如何影响地球和太阳系的古代磁场强度?
  • 批准号:
    NE/V001388/1
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Research Grant
How do Cortical regions selective for visual scenes develop in human infants?
人类婴儿对视觉场景的选择性皮层区域是如何发育的?
  • 批准号:
    10299043
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
How do Cortical regions selective for visual scenes develop in human infants?
人类婴儿对视觉场景的选择性皮层区域是如何发育的?
  • 批准号:
    10684888
  • 财政年份:
    2021
  • 资助金额:
    $ 54.41万
  • 项目类别:
How do we know what we know: neuropsychology, neuroimaging, and machine learning unraveling the neuro-cognitive substrate of semantic knowledge.
我们如何知道我们所知道的:神经心理学、神经影像学和机器学习揭示了语义知识的神经认知基础。
  • 批准号:
    413115
  • 财政年份:
    2019
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Fellowship Programs
Solar Wind-Magnetosphere-Ionosphere Coupling During Northward Interplanetary Magnetic Field: How do Transpolar Arcs Affect the Global Ionospheric Electrodynamics and vice versa?
向北行星际磁场期间的太阳风-磁层-电离层耦合:跨极弧如何影响全球电离层电动力学,反之亦然?
  • 批准号:
    1144884
  • 财政年份:
    2012
  • 资助金额:
    $ 54.41万
  • 项目类别:
    Standard Grant
How do Cx32 and Cx47 mutants cause CNS demyelination?
Cx32和Cx47突变体如何导致中枢神经系统脱髓鞘?
  • 批准号:
    7277129
  • 财政年份:
    2006
  • 资助金额:
    $ 54.41万
  • 项目类别:
HOW DO ENZYMES GENERATE AND CONTROL FREE RADICALS
酶如何产生和控制自由基
  • 批准号:
    6386451
  • 财政年份:
    1999
  • 资助金额:
    $ 54.41万
  • 项目类别:
HOW DO ENZYMES GENERATE AND CONTROL FREE RADICALS
酶如何产生和控制自由基
  • 批准号:
    2828013
  • 财政年份:
    1999
  • 资助金额:
    $ 54.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了