Cranial functional morphology of Archaeopteryx and the biomechanical triggers of avian evolution

始祖鸟的颅骨功能形态和鸟类进化的生物力学触发因素

基本信息

  • 批准号:
    NE/E001076/1
  • 负责人:
  • 金额:
    $ 10.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Archaeopteryx lithographica is the famous 'missing-link'. Brought to the attention of the world's scientific community only two years after publication of Darwin's On the Origin of the Species, the famous half-bird, half-reptile fossil was hailed as the ultimate evidence for evolution. The study proposed here will reveal new information about the ecology and evolution of this enigmatic fossil, using a rigorously quantified modelling approach. In some respects we know a good deal about Archaeopteryx. It is the most basal bird, and descended from within the theropod dinosaurs. It has a mosaic of bird and theropod characters: a bird-like brain capable of complex motor control, wings with asymmetrical, aerodynamic flight feathers but clawed hands, an elongated tail and jaws lined with teeth rather than a beak. A century and a half later there are still many things that we don't know about Archaeopteryx. How well could it fly? Was it terrestrial and took off from the ground up, or did it live in the trees? Could it run up tree trunks flapping its wings like partridges do? Are changes in function of the skeleton mirrored by changes in the skull? Did cranial evolution keep pace with the rest of the skeleton? Was the Archaeopteryx skull functioning as a bird or a dinosaur? Bones are generally adapted to the loads they experience, and the resulting stress and strain can dictate the shape of the skeleton. Despite lying at the base of a major radiation, we know nothing concrete about how the skull morphology of Archaeopteryx relates to its function. Deducing this would inform on its feeding behaviour, ecology and the selective pressures driving cranial evolution. The aim of this study is to deliver this knowledge. One method to decipher functional clues in the skeleton is the engineering technique Finite Element Analysis (FEA). Users build a digital model of the structure they wish to test (i.e. bridge, Archaeopteryx skull), apply elastic properties and loading forces that mimic the elasticity and behaviour (i.e. biting) to be tested. The analysis calculates strain and stress within the structure in response to these loading forces. This study will use FEA to test whether the skull of Archaeopteryx is adapted for pecking or biting and tearing, and estimate force of its bite, could it penetrate insect cuticle or hard seeds for example? This is important, as it will inform on ecological niches of the earliest flier and if these were predominately terrestrial or arboreal. The study will compare whether Archaeopteryx was functionally similar to a bird or a non-avian theropod, and test assertions that avian skull flexibility (kinesis) was present in Archaeopteryx. This is crucial to understanding the sequence and timing of the acquisition of avian characters, whether the skull evolves apace with the remaining skeleton and whether the skulls of early birds were more morphologically diverse than their non-avian theropod ancestors. The problem with FEA is that we know little of how well model results reflect reality, and which input parameters matter the most. Because of this, I will verify the accuracy of FEA first. I will load a dead, defleshed ostrich skull with carefully quantified force and experimentally measure bone strain. I will measure the elasticity of cranial bone, force exerted by the adductor muscles and use CT scans to accurately reconstruct the ostrich skull in FE-software. I will then apply the same loads to the FE-model and quantify the difference in orientation and magnitude of the experimental versus FE-model derived strain. By altering elastic properties, loads and muscle force in a sensitivity analysis, I will see which parameters influence model results the most. The resulting information can be used to make extinct animal FE-models as rigorous as possible based on what we know of the input parameters, the results being of importance to all those interested in FEA in biology.
始祖鸟石印是著名的“失踪环节”。在达尔文的《物种起源》出版仅两年后,这个著名的半鸟半爬行动物化石就引起了世界科学界的注意,被誉为进化论的终极证据。本文提出的研究将使用严格的量化建模方法,揭示有关这种神秘化石的生态学和进化的新信息。在某些方面,我们对始祖鸟了解很多。它是最基本的鸟类,是兽脚亚目恐龙的后裔。它具有鸟类和兽脚亚目恐龙的特征:像鸟一样的大脑,能够进行复杂的运动控制,翅膀上有不对称的空气动力学飞行羽毛,但有爪手,细长的尾巴和长满牙齿而不是喙的下巴。世纪过去了,关于始祖鸟,我们仍然有许多事情不知道。它能飞得多好?它是陆地上从地面起飞的,还是生活在树上的?它能像鹧鸪一样拍打翅膀爬上树干吗?骨骼功能的变化是否反映了头骨的变化?头骨的进化与骨骼的其他部分同步吗?始祖鸟头骨的功能是鸟类还是恐龙?骨骼通常适应它们所承受的负荷,并且由此产生的应力和应变可以决定骨骼的形状。尽管位于一个主要辐射的底部,我们对始祖鸟的头骨形态与其功能的关系一无所知。推断这一点将有助于了解其进食行为,生态学和推动颅骨进化的选择压力。本研究的目的是提供这些知识。解读骨骼中的功能线索的一种方法是工程技术有限元分析(FEA)。用户构建他们希望测试的结构的数字模型(即桥梁,始祖鸟头骨),应用弹性特性和模拟弹性和行为(即咬合)的加载力进行测试。该分析计算响应于这些载荷力的结构内的应变和应力。本研究将利用有限元分析来测试始祖鸟头骨是否适合啄或咬和撕裂,并估计其咬合力,例如它是否能穿透昆虫角质层或坚硬的种子?这是很重要的,因为它将告知最早的飞行者的生态位,如果这些主要是陆地或树栖的。这项研究将比较始祖鸟在功能上是否与鸟类或非鸟类的兽脚亚目恐龙相似,并测试始祖鸟中存在鸟类头骨灵活性(运动)的断言。这对于理解鸟类特征获得的顺序和时间至关重要,头骨是否与剩余的骨骼一起快速进化,以及早期鸟类的头骨是否比它们的非鸟类兽脚类祖先在形态上更加多样化。FEA的问题在于,我们对模型结果如何反映现实以及哪些输入参数最重要知之甚少。因此,我将首先验证FEA的准确性。我会给一个死了的,去了皮的鸵鸟头骨施加精确量化的力,然后实验性地测量骨骼的应变。我将测量颅骨的弹性,内收肌施加的力,并使用CT扫描在FE软件中准确地重建鸵鸟头骨。然后将相同的载荷施加到有限元模型上,并量化实验应变与有限元模型推导应变的方向和大小差异。通过在敏感性分析中改变弹性特性、载荷和肌肉力量,我将看到哪些参数对模型结果影响最大。由此产生的信息可以用来使灭绝动物FE模型尽可能严格的基础上,我们知道的输入参数,结果是重要的,所有那些有兴趣在生物学有限元分析。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validation experiments on finite element models of an ostrich (Struthio camelus) cranium.
对鸵鸟(Struthio Camelus)颅骨有限元模型的验证实验。
  • DOI:
    10.7717/peerj.1294
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Cuff AR;Bright JA;Rayfield EJ
  • 通讯作者:
    Rayfield EJ
How accurately does finite element analysis reproduce strain in the ostrich mandible during simulated pecking behavior?
有限元分析在模拟啄食行为期间再现鸵鸟下颌应变的准确度如何?
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Rayfield (Author)
  • 通讯作者:
    Emily Rayfield (Author)
Establishing a framework for archosaur cranial mechanics
  • DOI:
    10.1666/07006.1
  • 发表时间:
    2008-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Rayfield;A. Milner
  • 通讯作者:
    E. Rayfield;A. Milner
In-vitro strain in bird skulls and validation of the finite element method
鸟类头骨的体外应变和有限元方法的验证
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Rayfield (Author)
  • 通讯作者:
    Emily Rayfield (Author)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Rayfield其他文献

LB-044 - The effect of Yoda1 and fibroblast growth factor 18 on a novel in vitro 3-Dimensional human chondrocyte model
  • DOI:
    10.1016/j.joca.2024.03.046
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sophie Gilbert;Ana Carregosa;Andreas Heil;Sharon Dewitt;Christine Hammond;Emily Rayfield;Daniel Aeschlimann;Emma J. Blain
  • 通讯作者:
    Emma J. Blain
Extracellular matrix assembly stress initiates emDrosophila/em central nervous system morphogenesis
细胞外基质组装应激启动果蝇中枢神经系统形态发生
  • DOI:
    10.1016/j.devcel.2023.03.019
  • 发表时间:
    2023-05-22
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Eduardo Serna-Morales;Besaiz J. Sánchez-Sánchez;Stefania Marcotti;Angus Nichols;Anushka Bhargava;Anca Dragu;Liisa M. Hirvonen;María-del-Carmen Díaz-de-la-Loza;Matyas Mink;Susan Cox;Emily Rayfield;Rachel M. Lee;Chad M. Hobson;Teng-Leong Chew;Brian M. Stramer
  • 通讯作者:
    Brian M. Stramer
Artificial intelligence in paleontology
古生物学中的人工智能
  • DOI:
    10.1016/j.earscirev.2024.104765
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Congyu Yu;Fangbo Qin;Akinobu Watanabe;Weiqi Yao;Ying Li;Zichuan Qin;Yuming Liu;Haibing Wang;Qigao Jiangzuo;Allison Y. Hsiang;Chao Ma;Emily Rayfield;Michael J. Benton;Xing Xu
  • 通讯作者:
    Xing Xu

Emily Rayfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Rayfield', 18)}}的其他基金

Eat, heat and listen: on becoming a mammal
吃、加热和听:成为哺乳动物
  • 批准号:
    NE/X001504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
Form, function and development of the amniote skull: a case study using lepidosaurs
羊膜动物头骨的形式、功能和发育:鳞龙类案例研究
  • 批准号:
    BB/W00867X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
Skull evolution and the terrestrialization and radiation of tetrapods
头骨进化与四足动物的陆地化和辐射
  • 批准号:
    NE/P013090/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
Understanding the functional evolution of the mammalian middle ear and jaw joint across the cynodont-mammaliaform transition
了解哺乳动物中耳和下颌关节在犬齿兽-哺乳类过渡过程中的功能进化
  • 批准号:
    NE/K01496X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
The morpho-functional evolution of bird beaks and skulls
鸟喙和头骨的形态功能进化
  • 批准号:
    BB/I011668/1
  • 财政年份:
    2011
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
Diversity of the masticatory apparatus among extant rodents: 3D analysis and modeling of form and function
现存啮齿类动物咀嚼器官的多样性:形状和功能的 3D 分析和建模
  • 批准号:
    NE/G001979/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant
Applying synchrotron X-ray microtomography to a study of Morganucodon and Kuehneotherium: two of the earliest stem mammals.
将同步加速器 X 射线显微断层扫描应用于摩根古龙 (Morganucodon) 和 Kuehneotherium 的研究:两种最早的干哺乳动物。
  • 批准号:
    NE/E010431/1
  • 财政年份:
    2007
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Research Grant

相似国自然基金

Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
  • 批准号:
    82371801
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
  • 批准号:
    82371373
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
  • 批准号:
    82371873
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
  • 批准号:
    82372160
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
  • 批准号:
    82371213
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
浸润特性调制的统计热力学研究
  • 批准号:
    21173271
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
  • 批准号:
    2340080
  • 财政年份:
    2024
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Continuing Grant
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Morphology optimization of metamaterial micromechanisms integrating functional devices
集成功能器件的超材料微机构形貌优化
  • 批准号:
    23KF0137
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mitochondrial Calcium and Neuronal Health
线粒体钙和神经元健康
  • 批准号:
    10638869
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Strategies to predict and overcome resistance to cancer immunotherapy
预测和克服癌症免疫治疗耐药性的策略
  • 批准号:
    10638167
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Study of NEXMIF mosaic expression on neuronal development and connectivity in female mice
NEXMIF 镶嵌表达对雌性小鼠神经元发育和连接的影响研究
  • 批准号:
    10642436
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Regulation of microglial function by blood-borne factors
血源性因子对小胶质细胞功能的调节
  • 批准号:
    10679408
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Characterizing Entorhinal Cortex Circuit Dysfunction in an APOE Mouse Model of Chemotherapy-Induced Cognitive Impairment
化疗引起认知障碍的 APOE 小鼠模型中内嗅皮层回路功能障碍的特征
  • 批准号:
    10677984
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Characterizing the functional heterogeneity of the mouse paralaminar nucleus
表征小鼠板旁核的功能异质性
  • 批准号:
    10678525
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 10.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了