Acidity controls on organic matter cycling and nitrogen saturation in organic soils.
酸度控制有机土壤中的有机质循环和氮饱和度。
基本信息
- 批准号:NE/E011837/1
- 负责人:
- 金额:$ 23.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Peats and other organic soils provide a major global store of carbon (C), and growing peats provide a continuing sink for CO2 from the atmosphere, fixed through photosynthesis and stored as slowly-decomposing organic matter. The plants that grow in peaty ecosystems are characterised by a tolerance for low levels of the essential nutrient, nitrogen, but in many areas of world, including Europe and North America, intensive agriculture and fossil fuel burning have greatly increased the emissions of pollutant nitrogen (N) to the atmosphere, and subsequent deposition to these ecosystems. This increased nitrogen supply has been shown to lead to the displacement of species adapted for low-nitrogen conditions by other species better able to exploit increased nutrient availability, degrading biodiversity and potentially threatening the function of peatlands as a carbon sink. Over a prolonged period, 'nitrogen saturation' (nitrogen supply exceeding biological demand) can also occur, with excess nitrate leached to surface waters, where it can contribute to acidification and eutrophication. However, while organic soil ecosystems are currently accumulating nitrogen from the atmosphere, many are also undergoing dramatic chemical changes due to decreasing sulphur deposition (due to legislation to control sulphur emissions), and resulting recovery from acidification. Virtually our entire understanding of nitrogen cycling under elevated N deposition, and a significant part of our understanding of C cycling, is based on work within ecosystems that have also been impacted by acidifying sulphur deposition. We propose that both the C and N cycles of these systems are being strongly altered by acidity change, and therefore that currently observed behaviour may change in future. Specifically, we believe that rising pH will increase the loss of carbon and nitrogen as dissolved organic matter (DOM) from the system due to increases in biological production, and an increasing solubility of this DOC. This loss of N, coupled with increased demand for N by a growing microbial biomass, and increased plant productivity, will result in a tightening of the N cycle and less leakage of NO3. This tightening of the N cycle is likely reduce nitrate loss in soils subjected to high N deposition, and may even halt nitrate loss entirely from areas of lower N deposition. We will test our hypotheses with a set of realistic, field-based experiments in UK peaty ecosystems that have been exposed to relatively low and high historic levels of N pollution. In each experiment, we will manipulate soil pH over a two year period, during which time we will measure the effect of changing acidity on losses of C and N in gaseous and dissolved forms. We will also measure the effects of acidity change on a range of key ecosystem processes, such as the transformation of N between organic and inorganic forms, decomposition, and the assimilation of atmosperic CO2 into different organic matter stores, using a combination of cutting edge isotopic tracing techniques and enzyme measurements. We will use the results to support the development of a model of C and N cycling which, unlike most existing models, fully incorporates the effects of changing acidity, and this model will be used to predict future change in ecosystem carbon and nitrogen balances. We believe that this study could significantly refine our current understanding of the capacity of peaty ecosystems to store carbon and nitrogen from the atmosphere. If proven, our hypotheses would imply that ecosystems will become less susceptible to nitrogen saturation (and resulting environmental damage) as they become less acidic. At the same time, increased growth rates with rising pH (together with elevated nitrogen) could provide an enhanced sink for atmospheric CO2 sequestration within these important ecosystems.
泥炭和其他有机土壤为全球提供了主要的碳(C)储存,不断生长的泥炭为大气中的二氧化碳提供了一个持续的汇,通过光合作用固定,并作为缓慢分解的有机物质储存起来。生长在泥炭生态系统中的植物的特点是对必需营养物质氮的耐受水平较低,但在世界许多地区,包括欧洲和北美,集约化农业和化石燃料燃烧大大增加了向大气排放的污染物氮,并随后沉积到这些生态系统中。这种增加的氮供应已被证明会导致适应低氮条件的物种被其他能够更好地利用增加的养分供应的物种所取代,从而降低生物多样性,并潜在地威胁到泥炭地作为碳汇的功能。在很长一段时间内,还可能出现“氮饱和”(氮供应超过生物需求),过量的硝酸盐会淋滤到地表水,从而导致酸化和富营养化。然而,虽然有机土壤生态系统目前正在从大气中积累氮,但由于硫沉积的减少(由于控制硫排放的立法)以及酸化的恢复,许多生态系统也正在经历剧烈的化学变化。事实上,我们对氮沉降升高下氮循环的全部理解,以及我们对碳循环的理解的很大一部分,都是基于生态系统内的工作,这些生态系统也受到酸化硫沉降的影响。我们提出,这些系统的C和N循环都受到酸度变化的强烈改变,因此目前观察到的行为可能在未来发生变化。具体来说,我们认为pH升高会增加系统中作为溶解有机物(DOM)的碳和氮的损失,因为生物产量增加,并且这种DOC的溶解度增加。氮的流失,加上微生物生物量的增长和植物生产力的提高,将导致氮循环的收紧和NO3的减少。这种氮循环的收紧可能会减少高氮沉降土壤中的硝酸盐损失,甚至可能完全停止低氮沉降地区的硝酸盐损失。我们将在英国泥炭生态系统中进行一系列现实的实地实验,以测试我们的假设,这些生态系统已经暴露于相对低水平和高水平的历史氮污染中。在每个实验中,我们将在两年的时间内控制土壤pH值,在此期间,我们将测量酸度变化对气态和溶解形式的碳和氮损失的影响。我们还将测量酸度变化对一系列关键生态系统过程的影响,如N在有机和无机形式之间的转化、分解和大气二氧化碳同化到不同有机物储存中,使用尖端同位素示踪技术和酶测量相结合。我们将利用这些结果来支持C和N循环模型的开发,该模型与大多数现有模型不同,它充分考虑了酸度变化的影响,该模型将用于预测生态系统碳和氮平衡的未来变化。我们相信,这项研究可以大大改善我们目前对泥炭生态系统从大气中储存碳和氮的能力的理解。如果得到证实,我们的假设将意味着生态系统将变得不那么容易受到氮饱和(以及由此导致的环境破坏)的影响,因为它们变得不那么酸性。与此同时,随着pH值的升高(以及氮含量的升高),生长速度的提高可以为这些重要生态系统内的大气二氧化碳封存提供一个增强的汇。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carbon balance of UK peatlands: current state of knowledge and future research challenges
- DOI:10.3354/cr00903
- 发表时间:2010-01-01
- 期刊:
- 影响因子:1.1
- 作者:Billett, M. F.;Charman, D. J.;Rose, R.
- 通讯作者:Rose, R.
Acidity controls on dissolved organic carbon mobility in organic soils
- DOI:10.1111/j.1365-2486.2012.02794.x
- 发表时间:2012-11-01
- 期刊:
- 影响因子:11.6
- 作者:Evans, Chris D.;Jones, Tim G.;Freeman, Chris
- 通讯作者:Freeman, Chris
Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments
- DOI:10.1007/s10533-008-9256-x
- 发表时间:2008-10-01
- 期刊:
- 影响因子:4
- 作者:Evans, Chris D.;Goodale, Christine L.;Sheppard, Lucy J.
- 通讯作者:Sheppard, Lucy J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Evans其他文献
Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035
二分之一:到 2035 年将美国新车的燃料消耗减半
- DOI:
10.1007/978-1-4020-6979-6_4 - 发表时间:
2008 - 期刊:
- 影响因子:3.3
- 作者:
L. Cheah;Christopher Evans;A. Bandivadekar;J. Heywood - 通讯作者:
J. Heywood
Optimal Monetary Rules with Downward Nominal Wage Rigidity∗
名义工资刚性下降的最优货币规则*
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Christopher Evans - 通讯作者:
Christopher Evans
Fostering interdisciplinarity and collaboration: the role of challenge-driven research in European University Alliances through the CHARM-EU experience
培育跨学科性与合作:通过 CHARM-EU 经验看挑战驱动型研究在欧洲大学联盟中的作用
- DOI:
10.1057/s41599-025-04410-0 - 发表时间:
2025-04-03 - 期刊:
- 影响因子:3.600
- 作者:
Jaime Llorca;Vicente Royuela;Christopher Evans;Albert Diaz-Guilera;Raul Ramos - 通讯作者:
Raul Ramos
415 ANDROGRAPHOLIDE TARGETS AR PATHWAY IN CASTRATION-RESISTANT PROSTATE CANCER
- DOI:
10.1016/j.juro.2011.02.504 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Chengfei Liu;Meng Sun;Wei Lou;Jaeyeon Chun;Nagalakshmi Nadiminty;Christopher Evans;Allen Gao - 通讯作者:
Allen Gao
MP13-14 WHAT BENCHMARKS CAN WE EXPECT IN DETERMINING MARKERS OF QUALITY IN THE TREATMENT OF NON-MUSCLE INVASIVE BLADDER CANCER?
- DOI:
10.1016/j.juro.2016.02.2495 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Stanley Yap;Francisco Chavez;Neil Pugashetti;Marc Dall'Era;Christopher Evans;Ralph deVereWhite - 通讯作者:
Ralph deVereWhite
Christopher Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Evans', 18)}}的其他基金
Landscape Regeneration Solutions to the Interlinked Extinction and Climate Crises that support Sustainable Development
针对相互关联的灭绝和气候危机的景观再生解决方案,支持可持续发展
- 批准号:
NE/W004968/1 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
Lipid-polymer membranes: understanding ion transport through hybrid materials at the nanoscale
脂质聚合物膜:了解纳米级混合材料中的离子传输
- 批准号:
2219305 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Greenhouse Gas Instrumentation System for Aquatic Ecosystems (GHG-Aqua)
水生生态系统温室气体仪表系统 (GHG-Aqua)
- 批准号:
NE/V01627X/1 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
Greenhouse Gas Removal by Accelerated Peat Formation
通过加速泥炭形成去除温室气体
- 批准号:
BB/V011561/1 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
Understanding the role of conserved dynamic covalent junctions on block copolymer and network self-assembly
了解保守动态共价连接对嵌段共聚物和网络自组装的作用
- 批准号:
2029928 - 财政年份:2020
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
CAREER: Nanoscale Resolution of Interfacial Materials Physics in Dry, Ionic Polymers
职业:干燥离子聚合物中界面材料物理的纳米级分辨率
- 批准号:
1751291 - 财政年份:2018
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
I/UCRC FRP: Minimizing uncertainty in freeform optics metrology using CMMs
I/UCRC FRP:使用坐标测量机最大限度地减少自由曲面光学计量的不确定性
- 批准号:
1432990 - 财政年份:2014
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Catalytic Chemical Wear of Diamond Tools while Cutting Alloys
切削合金时金刚石工具的催化化学磨损
- 批准号:
1162209 - 财政年份:2012
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Acidity controls on organic matter cycling and nitrogen saturation in organic soils.
酸度控制有机土壤中的有机质循环和氮饱和度。
- 批准号:
NE/E011748/1 - 财政年份:2007
- 资助金额:
$ 23.57万 - 项目类别:
Research Grant
相似海外基金
CAREER: From the forest to the stream: Exploring forest land cover controls on dissolved organic matter character and aquatic ecosystem respiration in headwater streams
职业:从森林到溪流:探索森林土地覆盖对源头溪流中溶解有机物特征和水生生态系统呼吸的控制
- 批准号:
2333030 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Continuing Grant
Deciphering the physical controls on the fate of terrestrially-derived organic carbon in a high-yield tectonically-active margin
破译高产构造活跃边缘中陆源有机碳命运的物理控制
- 批准号:
2324953 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
What Controls Kinetics in Organic Mixed Conductors for Neuromorphic Computing and Beyond?
用于神经形态计算及其他领域的有机混合导体的动力学控制是什么?
- 批准号:
2309577 - 财政年份:2023
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Geomorphic and geologic controls on topography and accommodation space for organic carbon storage in mountain drainage basins
山地流域地形和有机碳储存空间的地貌和地质控制
- 批准号:
RGPIN-2018-03934 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual
EAR-Climate: Geomorphic controls on soil organic carbon in fire-prone erosional landscapes
EAR-气候:易发生火灾的侵蚀景观中土壤有机碳的地貌控制
- 批准号:
2136934 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Standard Grant
Microbial controls of hydrophobic organic chemical bioavailability in sediments
沉积物中疏水性有机化学生物利用度的微生物控制
- 批准号:
RGPIN-2022-03531 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual
Integrative molecular biogeochemistry of long-term litter quality and quantity controls on soil organic matter composition and persistence in temperate forests
温带森林土壤有机质组成和持久性长期凋落物质量和数量控制的综合分子生物地球化学
- 批准号:
RGPIN-2020-04944 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual
What controls soil organic carbon stability and nitrogen transformation in boreal forest soils?
是什么控制着北方森林土壤的有机碳稳定性和氮转化?
- 批准号:
RGPIN-2018-05700 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual
Microscale controls on soil organic matter stabilization and impacts on nitrogen cycling in Canadian prairie agroecosystems
加拿大草原农业生态系统土壤有机质稳定性的微观控制及其对氮循环的影响
- 批准号:
RGPIN-2017-05905 - 财政年份:2022
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual
What controls soil organic carbon stability and nitrogen transformation in boreal forest soils?
是什么控制着北方森林土壤的有机碳稳定性和氮转化?
- 批准号:
RGPIN-2018-05700 - 财政年份:2021
- 资助金额:
$ 23.57万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




