Direct Validated Improvement of Atmospheric Aerosol Property Prediction Using Laboratory Measurements

使用实验室测量直接验证改进大气气溶胶特性预测

基本信息

  • 批准号:
    NE/E018181/1
  • 负责人:
  • 金额:
    $ 44.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Aerosol particles influence climate directly by the scattering and absorption of solar radiation (direct effect) and indirectly through their role as cloud condensation nuclei (indirect effect), the latter effect comprising the largest uncertainty in climate change. Similarly, aerosol particles have a large impact on air quality. Unfortunately, there are many uncertainties which hinder our ability to model the behaviour of aerosol particles and thus asses the impacts they can have. These uncertainties are largely caused by the complexity of organic compounds, which represent a significant fraction of the chemical composition, and subsequent coupling with inorganic compounds. Whilst speciation is difficult we know certain compounds reside in this fraction yet detailed laboratory/theoretical studies focusing on specific parameters are lacking. Without an improved knowledge of basic data it is not possible to predict effects or simplify and / or parameterise aerosol properties with any degree of certainty. However, development of large scale models which aim to assess the effect of aerosols on climate, for example, rely heavily on such parameterisations. Thus, current unavailability of data propagates through to uncertainty in the aerosol impact. The most important uncertainties are in those parameters which dictate the aerosol water content and gas / aerosol partitioning. The former is necessary for predicting the direct and indirect climatic effect; the latter determines the evolving chemical composition of the aerosol and hence is necessary for predicting aerosol loading and composition which is also important for air quality considerations. To determine effects on water uptake below 100% relative humidity, investigations of aqueous thermodynamics are required through measurements / predictions of a quantity known as the water activity, which represents an 'effective' concentration. For predictions of water uptake above 100%RH, the solution surface tension is a crucial parameter for predictions of cloud activation. In describing the changing composition of aerosol particles, it is important to know how readily a compound will partition between the gas and particulate phase. Two parameters are important here. Solute activity coefficients, a measure of chemical interactions taking place in solution, describes how 'comfortable' a compound is in the aqueous aerosol, and is thus important for modelling condensation. Similarly, compounds with low vapour pressure have higher tendency to partition to aerosol particle and is thus an important parameter yet remains highly uncertain. This proposal seeks to conduct a range of detailed laboratory measurements, using well-established techniques, on key parameters which at the present time critically compromise the predictive capability of state of the art models of multicomponent aerosol behaviour. Improvement in the base models and predictive techniques from the laboratory programme will thus find its way directly to improved climate predictions and assesment of air quality.
气溶胶粒子通过散射和吸收太阳辐射直接影响气候(直接效应),并通过其作为云凝结核的作用间接影响气候(间接效应),后一种效应是气候变化中最大的不确定性。同样,气溶胶颗粒对空气质量有很大影响。不幸的是,存在许多不确定性,阻碍了我们对气溶胶颗粒行为进行建模并评估其可能产生的影响的能力。这些不确定性主要是由有机化合物的复杂性引起的,有机化合物占化学成分的很大一部分,随后与无机化合物结合。虽然物种形成是困难的,我们知道某些化合物存在于这一部分,但缺乏详细的实验室/理论研究,重点是特定的参数。如果不进一步了解基本数据,就不可能以任何确定程度预测影响或简化和/或确定气溶胶特性的参数。然而,例如,旨在评估气溶胶对气候影响的大尺度模型的开发在很大程度上依赖于这种参数化。因此,目前无法获得的数据传播到气溶胶影响的不确定性。最重要的不确定性是在那些参数,决定气溶胶水含量和气体/气溶胶分配。前者对于预测直接和间接的气候影响是必要的;后者决定了气溶胶的化学成分的演变,因此对于预测气溶胶的负荷和成分是必要的,这对空气质量的考虑也是重要的。为了确定在100%相对湿度以下对水吸收的影响,需要通过测量/预测被称为水活度的量来调查水热力学,水活度代表“有效”浓度。对于100%RH以上的吸水预测,溶液表面张力是预测云活化的关键参数。在描述气溶胶粒子的组成变化时,重要的是要知道一种化合物在气相和颗粒相之间分配的容易程度。这里有两个参数很重要。溶质活度系数是对溶液中发生的化学相互作用的测量,它描述了一种化合物在含水气溶胶中的“舒适度”,因此对于模拟冷凝非常重要。同样,具有低蒸气压的化合物更倾向于分配到气溶胶颗粒中,因此是一个重要的参数,但仍然高度不确定。该提案旨在利用成熟的技术对关键参数进行一系列详细的实验室测量,这些参数目前严重损害了多组分气溶胶行为的最新模型的预测能力。因此,实验室方案对基本模式和预测技术的改进将直接改善气候预测和空气质量评估。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties - Part 1: A systematic evaluation of some available estimation techniques
  • DOI:
    10.5194/acp-10-10255-2010
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    McFiggans, G.;Topping, D. O.;Barley, M. H.
  • 通讯作者:
    Barley, M. H.
Solid state and sub-cooled liquid vapour pressures of cyclic aliphatic dicarboxylic acids
  • DOI:
    10.5194/acp-11-655-2011
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    A. M. Booth;W. Montague;M. Barley;D. Topping;G. Mcfiggans;A. Garforth;C. Percival
  • 通讯作者:
    A. M. Booth;W. Montague;M. Barley;D. Topping;G. Mcfiggans;A. Garforth;C. Percival
Surfactant effects in global simulations of cloud droplet activation
  • DOI:
    10.1029/2011gl050467
  • 发表时间:
    2012-03-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Prisle, N. L.;Asmi, A.;Kokkola, H.
  • 通讯作者:
    Kokkola, H.
Critical assessment of liquid density estimation methods for multifunctional organic compounds and their use in atmospheric science.
  • DOI:
    10.1021/jp304547r
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Barley;D. Topping;G. Mcfiggans
  • 通讯作者:
    M. Barley;D. Topping;G. Mcfiggans
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Topping其他文献

David Topping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Topping', 18)}}的其他基金

Southern Ocean Clouds (SOC)
南大洋云 (SOC)
  • 批准号:
    NE/T006447/1
  • 财政年份:
    2020
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
International network for coordinating work on the physicochemical properties of molecules and mixtures important for atmospheric particulate matter
协调对大气颗粒物重要的分子和混合物的物理化学性质工作的国际网络
  • 批准号:
    NE/N013794/1
  • 财政年份:
    2016
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Diffusion and Equilibration in Viscous Atmospheric Aerosol
粘性大气气溶胶的扩散和平衡
  • 批准号:
    NE/M003531/1
  • 财政年份:
    2015
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Novel approaches for quantifying the highly uncertain thermodynamics and kinetics of atmospheric gas-to-particle conversion
量化大气气体到颗粒转化的高度不确定的热力学和动力学的新方法
  • 批准号:
    NE/J02175X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Can emerging general purpose graphics processing unit (GPGPU) technology be used to mitigate computational burdens in environmental models?
新兴的通用图形处理单元(GPGPU)技术能否用于减轻环境模型中的计算负担?
  • 批准号:
    NE/J013471/1
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Improvement of composition and property prediction techniques for for Secondary Organic Aerosol (SOA)
二次有机气溶胶(SOA)成分和性质预测技术的改进
  • 批准号:
    NE/J009202/1
  • 财政年份:
    2012
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
Novel informatic software for automated aerosol component property predictions and ensemble predictions for direct model - measurement comparison
用于自动气溶胶成分特性预测和直接模型测量比较的整体预测的新型信息软件
  • 批准号:
    NE/H002588/1
  • 财政年份:
    2010
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant

相似海外基金

Development of a validated human iPSCs-derived microglia and brain organoid co-culture platform to investigate neuro-immune interactions
开发经过验证的人类 iPSC 衍生的小胶质细胞和脑类器官共培养平台,以研究神经免疫相互作用
  • 批准号:
    2884867
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Studentship
Using AI and big data to identify a set of biologically validated drug targets for hard-to-treat cancers
使用人工智能和大数据来确定一组经过生物学验证的药物靶点,用于治疗难以治疗的癌症
  • 批准号:
    2886797
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Studentship
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224371
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
  • 批准号:
    EP/W033917/1
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Research Grant
CDS&E: A Validated Hybrid Echo-CFD Framework for Patient-Specific Cardiac Assessment
CDS
  • 批准号:
    2152869
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Validated Complementarity Contact Conditions for Suction-Friction of Multiphasic Soft Materials
合作研究:验证多相软材料吸力摩擦的互补接触条件
  • 批准号:
    2224380
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
Preparing Students for the Second Quantum Revolution Using Research-Validated Learning Tools
使用经过研究验证的学习工具让学生为第二次量子革命做好准备
  • 批准号:
    2309260
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    Standard Grant
METASTRA: CoMputer-aided EffecTive frActure risk STRAtification of patients with vertebral metastases for personalised treatment through robust computational models validated in clinical settings
METATRA:通过在临床环境中验证的强大计算模型,对椎体转移患者进行计算机辅助有效骨折风险分层,以进行个性化治疗
  • 批准号:
    10075325
  • 财政年份:
    2023
  • 资助金额:
    $ 44.35万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了