BIOPHYSICAL MECHANISMS OF CHEMOTAXIS
趋化性的生物物理机制
基本信息
- 批准号:7955845
- 负责人:
- 金额:$ 2.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:Amoeba genusBiological ModelsBiomedical ResearchCellsChemicalsChemotactic FactorsChemotaxisComputer Retrieval of Information on Scientific Projects DatabaseCyclic AMPDictyosteliumDictyostelium discoideumEmbryonic DevelopmentEukaryotic CellFundingGrantImmune responseIndividualityInstitutionLasersMeasuresMicrofluidic MicrochipsNoisePhysiologic pulsePlayPopulationResearchResearch PersonnelResourcesRoleSignal TransductionSourceTechniquesUnited States National Institutes of HealthWound Healingangiogenesislithographyresearch studyresponsesocial
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Chemotaxis, the ability of the cell to sense and move in the direction of higher concentration of chemicals, is an integral part of immune response. Additionally it plays a key role in wound healing, angiogenesis, and embryogenesis. Dictyostelium discoideum, a model system for eukaryotic cells, is a social amoeba and has been studied extensively over the past twenty years. In our experiments, we probe and quantitatively measure the initial chemotactic response of single Dictyostelium cells by quantifying the localization dynamics of this key component of signaling transduction network in response to repeated spatio-temporal pulses of chemoattractant. We find that the response of a single cell is very reproducible from pulse-to-pulse. In contrast, we observe a large variability in the chemotactic response from cell-to-cell even when different cells in population are exposed to the same pulse. Although on average a population of cells finds the correct direction of the pulse, a significant variability is observed in the direction and the magnitude of the response. Origins of the noise and cell individuality by quantitatively are explored by measuring the external concentration of the cAMP molecules. We observe that the reliability in the directional sensing mechanism is not limited by the low number of external cAMP molecules and the noise does not decrease when the external cAMP molecules increases by 2 orders of magnitude. Additional studies aimed at better understanding the chemotaxis mechanism will utilize microfluidic devices produced via soft lithography techniques to generate a variety of spatio-temporal chemical gradients.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
趋化性是细胞感知并向更高浓度化学物质方向移动的能力,是免疫反应的组成部分。此外,它在伤口愈合、血管生成和胚胎发生中起关键作用。盘基网柄阿米巴是一种社会性阿米巴,是真核细胞的模型系统,在过去的二十年里得到了广泛的研究。在我们的实验中,我们探测和定量测量的初始趋化反应的单个Dictyosteoblastoma细胞的信号转导网络的这个关键组成部分,在响应于重复的时空脉冲的化学引诱物的定位动态。我们发现,单细胞的反应是非常可重复的脉冲到脉冲。相比之下,我们观察到一个大的变化,从细胞到细胞的趋化反应,即使在人口中的不同细胞暴露于相同的脉冲。虽然平均而言,细胞群找到了脉冲的正确方向,但在响应的方向和幅度上观察到了显著的变化。通过测量cAMP分子的外部浓度,定量地探索噪声和细胞个体性的来源。我们观察到,在定向传感机制的可靠性是不受限制的外部cAMP分子的数量少,噪声不减少时,外部cAMP分子增加了2个数量级。旨在更好地理解趋化机制的其他研究将利用通过软光刻技术产生的微流体装置来产生各种时空化学梯度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER VAN OUDENAARDEN其他文献
ALEXANDER VAN OUDENAARDEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER VAN OUDENAARDEN', 18)}}的其他基金
The MIT Center for Single-Cell Dynamics in Cancer (SCDC)
麻省理工学院癌症单细胞动力学中心 (SCDC)
- 批准号:
8120889 - 财政年份:2009
- 资助金额:
$ 2.85万 - 项目类别:
The MIT Center for Single-Cell Dynamics in Cancer (SCDC)
麻省理工学院癌症单细胞动力学中心 (SCDC)
- 批准号:
7789167 - 财政年份:2009
- 资助金额:
$ 2.85万 - 项目类别:
MAPK Signaling in Single Yeast Cells: Dynamics, Variability, and Evolution
单酵母细胞中的 MAPK 信号传导:动力学、变异性和进化
- 批准号:
7917742 - 财政年份:2009
- 资助金额:
$ 2.85万 - 项目类别:
The MIT Center for Single-Cell Dynamics in Cancer (SCDC)
麻省理工学院癌症单细胞动力学中心 (SCDC)
- 批准号:
7942784 - 财政年份:2009
- 资助金额:
$ 2.85万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 2.85万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 2.85万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 2.85万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 2.85万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 2.85万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 2.85万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 2.85万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 2.85万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 2.85万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 2.85万 - 项目类别:














{{item.name}}会员




