IMPROVED PREAMPLIFIER FOR FTICRMS
改进的 FTICRMS 前置放大器
基本信息
- 批准号:7955923
- 负责人:
- 金额:$ 0.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AmplifiersBiologicalBiologyCellsChargeCommunitiesComparative StudyComputer Retrieval of Information on Scientific Projects DatabaseDetectionDevelopmentDevicesDoctor of PhilosophyElectric CapacitanceElectronsFigs - dietaryFreezingFrequenciesFundingGrantInstitutionIonsMass Spectrum AnalysisMeasuresMedicineNoiseOperative Surgical ProceduresPerformancePower SourcesPublishingReportingResearchResearch PersonnelResistanceResourcesSemiconductorsSignal TransductionSiliconSourceStagingSystemTemperatureTestingTimeTransistorsUnited States National Institutes of HealthVacuumWorkbasecold temperaturecryogenicscryostatdesignelectric impedancegallium arsenideimprovedinstrumentinstrumentationmass spectrometermeetingsprototyperesponsesuperconductivityvoltage
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
FTMS is the instrument of choice for the analysis of biological molecules due to its high mass accuracy, resolving power, and wide dynamic range. There is a potential for improving these performance parameters further, if an FTMS is enabled to detect a single ion with a unit charge. Thus, recently there has been a push in the FTMS community to improve the detection sensitivity of an FTMS1. Unit charge detection sensitivity can be achieved by improving the signal to noise ratio of the detection circuit in an FTMS. Noise in an FTMS preamplifier circuit can be minimized by building a differential design using low noise active devices. The signal to noise ratio of this preamplifier circuit can be enhanced further by cooling the circuit to low temperatures to reduce the thermal (Johnson) noise2.
Initial prototypes of such a low noise wideband amplifier were built using silicon based components. A classical op-amp based instrumentation amplifier, and a JFET-based three-stage amplifier were designed and characterized for their performance. The results demonstrated that both of them provide sufficient gain. Further, the three-stage amplifier has a superior noise performance. In addition, a comparative study between the three-stage amplifier and a commercial amplifier on FTMS indicated that the former provides a signal to noise ratio about 2.5 times higher than that of the commercial amplifier. However, none of these amplifiers could meet the bandwidth requirement of 10 MHz.
These preliminary amplifiers were built using silicon based components. Thus, they cannot work at cryogenic temperatures, since carrier freeze-out generally occurs in silicon below 20 Kelvin. However, GaAs is a compound semiconductor material which has higher electron mobility compared to silicon and can be operated at cryogenic temperatures (~4K). Here we report ongoing progress in the development of a cryogenic low noise preamplifier based on these devices for FTMS.
A simple inverting amplifier which represents half of the ultimate differential cryo-amplifier was designed using commercial GaAs HEMTs as shown in Fig. 1. The GaAs HEMTs used have a Noise Figure of 1.2 dB at 12 GHz3. The gain of the amplifier is equal to the product of the transconductance (gm) and the drain resistance (RD). The HEMT was operated at VDS = 2 volts and IDS = 5mA. The measured transconductance of the device at the above bias point was approximately 30 mS. The expected voltage gain was around 6 (gm X RDS). A plot of the measured gain versus frequency is shown in Fig. 2. Further analysis of the inverting preamplifier revealed that the operating point of the amplifier was unstable. Further tests using high frequency spectrum analyzer showed that the amplifier was oscillating at a frequency of 6.2 GHz, without input signal.
The fully-differential preamplifier is being designed to be mounted on the detection plates of the cell, but the intrinsic cell capacitance, ~ 12 pF per plate, limits the design. This capacitance, in parallel with the input impedance of the amplifier defines the high frequency response of the amplifier. Even so, the current preamplifier design yielded a gain of 5 and a 3 dB bandwidth of 1.6 MHz, using a 1 Mohm input resistor at room temperature. This design should allow a five-fold improvement in signal to noise ratio compared to current designs, and has been designed using components that are compatible with cryogenic temperature operation, which will potentially reduce the noise another ~8 fold. It is expected that the bias point of the transistors will change with temperature, thus requiring adjustment of the input bias potential at low temperatures. To test this, a simple cryostat was constructed for optimizing this amplifier at low temperatures. The system has now been tested on the actual mass spectrometer and it works well at low temperatures.
Furthermore, the pramplifier has been shown to have 25 fold lower noise than the original IonSpec, in-vacuum preamplifier on the 7T MALDI-FTMS, which can be improved a further 5 fold by using batteries rather than switching power supplies for Vdd and Vss. A version of this preamplifier which uses GaAs MESFET transistors suitable for operation at 4K is now constructed and tested both at 4K and at 14T and is currently being installed in the Cryogenic FTMS. The first room-temperature version of this amplifier was published in JASMS.
The cryogenic version of this amplifier was completed and tested, and an article has recently been published in IEEE Transactions on Applied Superconductivity 2008, 18, 1781-1789.
Raman Mathur completed his Ph.D. on this project, so most likely there will not be more progress on this project for some time.
这个子项目是许多研究子项目中利用
资源由NIH/NCRR资助的中心拨款提供。子项目和
调查员(PI)可能从NIH的另一个来源获得了主要资金,
并因此可以在其他清晰的条目中表示。列出的机构是
该中心不一定是调查人员的机构。
FTMS因其高质量精度、高分辨率和宽动态范围而成为生物分子分析的首选仪器。如果FTMS能够检测具有单位电荷的单个离子,则有可能进一步改善这些性能参数。因此,最近FTMS社区中一直在推动提高FTMS1的检测灵敏度。通过提高FTMS中检测电路的信噪比,可以获得单位电荷检测灵敏度。FTMS前置放大器电路中的噪声可以通过使用低噪声有源器件构建差分设计来最小化。通过将电路冷却到较低温度以降低热(约翰逊)噪声2,可以进一步提高该前置放大电路的信噪比。
这种低噪声宽带放大器的最初原型是使用硅基元件制造的。设计了一个基于经典运放的仪表放大器和一个基于JFET的三级放大器,并对其性能进行了表征。结果表明,这两种方法都提供了足够的增益。此外,三级放大器具有优越的噪声性能。此外,在FTMS上对三级放大器和商用放大器进行了比较研究,结果表明,三级放大器的信噪比约为商用放大器的2.5倍。然而,这些放大器都不能满足10 MHz的带宽要求。
这些初步的放大器是使用硅基元件制造的。因此,它们不能在低温下工作,因为载流子冻结通常发生在低于20开尔文的硅中。然而,GaAs是一种化合物半导体材料,与硅相比具有更高的电子迁移率,并且可以在低温(~4K)下工作。在此,我们报告了基于这些器件的用于FTMS的低温低噪声前置放大器的开发进展。
用商用的GaAsHEMT设计了一个简单的反相放大器,它代表了极限差分低温放大器的一半,如图1所示。所用的GaAsHEMT在12 GHz时的噪声系数为1.2dB3。放大器的增益等于跨导(Gm)和漏极电阻(Rd)的乘积。HEMT的工作电压为VDS=2V,电流强度为5 mA。在上述偏置点测得的器件跨导约为30ms。预期的电压增益约为6(gm×rds)。测量的增益与频率的关系图如图2所示。对倒相前置放大器的进一步分析表明,该放大器的工作点是不稳定的。使用高频频谱分析仪进一步测试表明,该放大器在没有输入信号的情况下以6.2 GHz的频率振荡。
全差分前置放大器被设计为安装在电池的检测板上,但固有的电池电容(~12 pF/板)限制了设计。该电容与放大器的输入阻抗并行,定义了放大器的高频响应。尽管如此,电流前置放大器的设计在室温下使用1欧姆的输入电阻,获得了5的增益和1.6 MHz的3分贝带宽。与目前的设计相比,该设计应该可以使信噪比提高五倍,并且使用了与低温操作兼容的组件,这将潜在地将噪声降低约8倍。预计晶体管的偏置点将随着温度的变化而变化,因此需要在低温下调整输入偏置电位。为了测试这一点,我们构建了一个简单的低温恒温器,用于在低温下优化该放大器。该系统现在已经在实际的质谱仪上进行了测试,它在低温下工作良好。
此外,在7T MALDI-FTMS上,放大器的噪声比原来的IonSpec真空前置放大器低25倍,通过使用电池而不是切换Vdd和Vss的电源,可以进一步提高5倍。这种前置放大器的一个版本使用了适合在4K下工作的GaAs MESFET晶体管,现在已经在4K和14T下建造和测试,目前正在安装在低温FTMS中。这种放大器的第一个室温版本发表在JASMS上。
该放大器的低温版本已经完成并进行了测试,最近在IEEE应用超导会刊2008、18、1781-1789上发表了一篇文章。
拉曼·马图尔在这个项目上完成了博士学位,所以这个项目很可能在一段时间内不会有更多的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER B. O'CONNOR其他文献
PETER B. O'CONNOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER B. O'CONNOR', 18)}}的其他基金
USE OF 18O LABELS TO MONITOR DEAMIDATION DURING SAMPLE PROCESSING
使用 18O 标签监测样品处理过程中的脱酰胺作用
- 批准号:
7955974 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
DEVELOPMENT OF AN AMPLITUDE AND FREQUENCY STABILIZED HIGH POWER OSCILLATOR
稳幅稳频大功率振荡器的研制
- 批准号:
7955976 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
THE EFFECT OF FIXED CHARGE MODIFICATION ON ECD
固定收费修改对 ECD 的影响
- 批准号:
7955975 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
DIFFERENTIATION OF ISOMERIC AMINO ACID RESIDUES IN PEPTIDES USING ECD
使用 ECD 区分肽中的异构氨基酸残基
- 批准号:
7955921 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
ECD AND EDD OF NATIVE AND PERMETHYLATED GLYCANS
天然和全甲基化聚糖的 ECD 和 EDD
- 批准号:
7955963 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
TESTING APPLICATION OF THE FILTER DIAGONALIZATION METHOD TO FTMS
滤波器对角化方法在FTMS中的测试应用
- 批准号:
7955922 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
VIBRATIONALLY COOLED MATRIX-ASSIST LASER DESORPTION/IONIZATION FTMS
振动冷却基质辅助激光解吸/电离 FTMS
- 批准号:
7955884 - 财政年份:2009
- 资助金额:
$ 0.36万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 0.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 0.36万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 0.36万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 0.36万 - 项目类别:
Discovery Grants Program - Individual