USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION

利用折叠过程改进蛋白质结构预测

基本信息

  • 批准号:
    7956344
  • 负责人:
  • 金额:
    $ 0.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Computational methods for determining protein structure are essential to the genome project due to the huge number of new sequences for proteins whose properties are completely unknown. A major limitation to current protein structure prediction algorithms is the inadequate quality of the input secondary structure predictions produced by the two major secondary strcture servers. These servers use machine learning methods that extensively rely on sequence similarity (called homology) and, hence, use sequence local information despite the knowledge that tertiary context often influences the secondary structure. We have devised a Monte Carlo simulated annealing algorithm and a corresponding set of computer codes to implement a novel scheme in which both secondary and tertiary structure are predicted in a self-consistent bootstrap fashion without the use of homology information. Tests made using a teragrid development grant demonstrate that our method outperforms the leading servers in secondary structure prediction and provides comparable tertiary structures to the best methods (using two orders of magnitude less computer time!) for small (less than 120 residues) single domain proteins. This proposal seeks to improve and extend our predictive methods as well as increase their computational efficiency. Proposed projects include the use of sequence similarity to improve our move set, the introduction of dynamic criteria for secondary structure assignment that vary depending of the fraction of structure previously assigned during the simulations, the improvement of the energy function to enhance the predictive quality and enable treating larger proteins, etc. Extensive applications will consider a wide range of proteins with unusual or difficult tertiary structures.
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可以在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 确定蛋白质结构的计算方法对于基因组计划是必不可少的,因为大量的蛋白质新序列的性质是完全未知的。当前蛋白质结构预测算法的一个主要限制是由两个主要的二级结构服务器产生的输入二级结构预测的质量不足。这些服务器使用广泛依赖于序列相似性(称为同源性)的机器学习方法,因此,尽管知道三级背景通常会影响二级结构,但仍使用序列局部信息。我们已经设计了一个Monte Carlo模拟退火算法和相应的一组计算机代码来实现一个新的计划,其中二级和三级结构预测在一个自洽的引导方式,而不使用同源性信息。使用teragrid开发基金进行的测试表明,我们的方法在二级结构预测方面优于领先的服务器,并提供与最佳方法相当的三级结构(使用两个数量级的计算机时间!)对于小的(小于120个残基)单结构域蛋白。该建议旨在改进和扩展我们的预测方法,并提高其计算效率。建议的项目包括使用序列相似性,以提高我们的移动集,引入动态二级结构分配的标准,根据不同的结构的分数先前分配在模拟过程中,改进的能量函数,以提高预测质量,使治疗更大的蛋白质,等广泛的应用将考虑广泛的蛋白质与不寻常的或困难的三级结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KARL F FREED其他文献

KARL F FREED的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KARL F FREED', 18)}}的其他基金

USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION
利用折叠过程改进蛋白质结构预测
  • 批准号:
    8364286
  • 财政年份:
    2011
  • 资助金额:
    $ 0.08万
  • 项目类别:
USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION
利用折叠过程改进蛋白质结构预测
  • 批准号:
    8171883
  • 财政年份:
    2010
  • 资助金额:
    $ 0.08万
  • 项目类别:
GENERATING THE THERMALIZED AND EQUILIBRIATED UNFOLDED STATE ENSEMBLES
生成热化和平衡的未折叠状态系综
  • 批准号:
    7723167
  • 财政年份:
    2008
  • 资助金额:
    $ 0.08万
  • 项目类别:
GENERATING THE THERMALIZED AND EQUILIBRIATED UNFOLDED STATE ENSEMBLES
生成热化和平衡的未折叠状态系综
  • 批准号:
    7601376
  • 财政年份:
    2007
  • 资助金额:
    $ 0.08万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6363286
  • 财政年份:
    2000
  • 资助金额:
    $ 0.08万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6519841
  • 财政年份:
    2000
  • 资助金额:
    $ 0.08万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6096912
  • 财政年份:
    2000
  • 资助金额:
    $ 0.08万
  • 项目类别:
Integrating experiment and theory for predicting protein folding pathways and structure
整合实验和理论来预测蛋白质折叠途径和结构
  • 批准号:
    9403133
  • 财政年份:
    1996
  • 资助金额:
    $ 0.08万
  • 项目类别:

相似海外基金

Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
  • 批准号:
    23K06972
  • 财政年份:
    2023
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
  • 批准号:
    23KJ0939
  • 财政年份:
    2023
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
  • 批准号:
    19K07013
  • 财政年份:
    2019
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
  • 批准号:
    16K05820
  • 财政年份:
    2016
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
  • 批准号:
    16K08426
  • 财政年份:
    2016
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
  • 批准号:
    25461010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
  • 批准号:
    23654177
  • 财政年份:
    2011
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
  • 批准号:
    22550105
  • 财政年份:
    2010
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
  • 批准号:
    NE/D00232X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
  • 批准号:
    16500189
  • 财政年份:
    2004
  • 资助金额:
    $ 0.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了