USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION

利用折叠过程改进蛋白质结构预测

基本信息

  • 批准号:
    8364286
  • 负责人:
  • 金额:
    $ 0.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Computational methods for determining protein structure are essential to the genome project due to the huge number of new sequences for proteins whose properties are completely unknown. A major limitation to current protein structure prediction algorithms is the inadequate quality of the input secondary structure predictions produced by the two major secondary strcture servers. These servers use machine learning methods that extensively rely on sequence similarity (called homology) and, hence, use sequence local information despite the knowledge that tertiary context often influences the secondary structure. We have devised a Monte Carlo simulated annealing algorithm and a corresponding set of computer codes to implement a novel scheme in which both secondary and tertiary structure are predicted in a self-consistent bootstrap fashion without the use of homology information. Tests made using a teragrid development grant demonstrate that our method outperforms the leading servers in secondary structure prediction and provides comparable tertiary structures to the best methods (using two orders of magnitude less computer time!) for small (less than 120 residues) single domain proteins. This proposal seeks to improve and extend our predictive methods as well as increase their computational efficiency. Proposed projects include the use of sequence similarity to improve our move set, the introduction of dynamic criteria for secondary structure assignment that vary depending of the fraction of structure previously assigned during the simulations, the improvement of the energy function to enhance the predictive quality and enable treating larger proteins, etc. Extensive applications will consider a wide range of proteins with unusual or difficult tertiary structures.
该子项目是利用资源的众多研究子项目之一 由 NIH/NCRR 资助的中心拨款提供。子项目的主要支持 并且子项目的主要研究者可能是由其他来源提供的, 包括其他 NIH 来源。 子项目可能列出的总成本 代表子项目使用的中心基础设施的估计数量, NCRR 赠款不直接向子项目或子项目工作人员提供资金。 由于存在大量性质完全未知的蛋白质新序列,确定蛋白质结构的计算方法对于基因组计划至关重要。当前蛋白质结构预测算法的一个主要限制是两个主要二级结构服务器产生的输入二级结构预测的质量不足。这些服务器使用广泛依赖于序列相似性(称为同源性)的机器学习方法,因此尽管知道三级上下文经常影响二级结构,但仍使用序列局部信息。我们设计了蒙特卡罗模拟退火算法和相应的计算机代码集来实现一种新颖的方案,其中以自洽引导方式预测二级和三级结构,而不使用同源信息。使用 teragrid 开发补助金进行的测试表明,我们的方法在二级结构预测方面优于领先的服务器,并为小型(少于 120 个残基)单域蛋白质提供了与最佳方法相当的三级结构(使用的计算机时间少了两个数量级!)。该提案旨在改进和扩展我们的预测方法并提高其计算效率。拟议的项目包括使用序列相似性来改进我们的移动集、引入二级结构分配的动态标准(该标准根据模拟过程中先前分配的结构分数而变化)、改进能量函数以提高预测质量并能够处理更大的蛋白质等。广泛的应用将考虑具有不寻常或困难的三级结构的各种蛋白质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KARL F FREED其他文献

KARL F FREED的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KARL F FREED', 18)}}的其他基金

USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION
利用折叠过程改进蛋白质结构预测
  • 批准号:
    8171883
  • 财政年份:
    2010
  • 资助金额:
    $ 0.11万
  • 项目类别:
USING THE FOLDING PROCESS TO IMPROVE PROTEIN STRUCTURE PREDICTION
利用折叠过程改进蛋白质结构预测
  • 批准号:
    7956344
  • 财政年份:
    2009
  • 资助金额:
    $ 0.11万
  • 项目类别:
GENERATING THE THERMALIZED AND EQUILIBRIATED UNFOLDED STATE ENSEMBLES
生成热化和平衡的未折叠状态系综
  • 批准号:
    7723167
  • 财政年份:
    2008
  • 资助金额:
    $ 0.11万
  • 项目类别:
GENERATING THE THERMALIZED AND EQUILIBRIATED UNFOLDED STATE ENSEMBLES
生成热化和平衡的未折叠状态系综
  • 批准号:
    7601376
  • 财政年份:
    2007
  • 资助金额:
    $ 0.11万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6363286
  • 财政年份:
    2000
  • 资助金额:
    $ 0.11万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6519841
  • 财政年份:
    2000
  • 资助金额:
    $ 0.11万
  • 项目类别:
NOVEL PARADIGM FOR LONG TIME PEPTIDE/PROTEIN DYNAMICS
长时间肽/蛋白质动力学的新颖范例
  • 批准号:
    6096912
  • 财政年份:
    2000
  • 资助金额:
    $ 0.11万
  • 项目类别:
Integrating experiment and theory for predicting protein folding pathways and structure
整合实验和理论来预测蛋白质折叠途径和结构
  • 批准号:
    9403133
  • 财政年份:
    1996
  • 资助金额:
    $ 0.11万
  • 项目类别:

相似海外基金

Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
  • 批准号:
    23K06972
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
  • 批准号:
    23KJ0939
  • 财政年份:
    2023
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
  • 批准号:
    19K07013
  • 财政年份:
    2019
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
  • 批准号:
    16K05820
  • 财政年份:
    2016
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
  • 批准号:
    16K08426
  • 财政年份:
    2016
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
  • 批准号:
    25461010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
  • 批准号:
    23654177
  • 财政年份:
    2011
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
  • 批准号:
    22550105
  • 财政年份:
    2010
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
  • 批准号:
    NE/D00232X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
  • 批准号:
    16500189
  • 财政年份:
    2004
  • 资助金额:
    $ 0.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了