Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
基本信息
- 批准号:7965300
- 负责人:
- 金额:$ 96.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAntineoplastic AgentsBackBindingBinding ProteinsCell CycleCell Cycle CheckpointCell Cycle StageCell divisionCellsChromatinChromatin StructureClinicalCommunitiesDNADNA Replication TimingDNA SequenceDNA Synthesis InhibitionDNA biosynthesisDNA-Protein InteractionDNA-dependent protein kinaseDevelopmentDissectionEpigenetic ProcessEquilibriumEventEvolutionExhibitsExposure toGene ExpressionGene SilencingGene Transduction AgentGenesGeneticGenetsGenomicsGrowthHealthHumanLeadLocationMalignant NeoplasmsMammalian CellMediatingMetabolicMethylationModificationMutatePathway interactionsPatternPharmaceutical PreparationsPhasePhosphotransferasesPhysical condensationPoint MutationPolymeraseProteinsReplication InitiationReportingResolutionRoleScienceSignal PathwaySignal TransductionSiteSpecific qualifier valueStagingStem cellsStructureTherapeuticTimeTissuesXRCC4 genebeta Globincancer cellcancer therapycell growthcombatgene therapygenetic elementhelicasehistone modificationhomologous recombinationimprovedinhibitor/antagonistinsightknowledge basenovelnucleasepreventprotein complexreplicatorresponsesingle moleculetherapeutic transgenetoolvector
项目摘要
The DNA Replication Group aims to understand how information from the cell cycle machinery leads to the initiation of DNA replication. Proper cell growth depends on a network of interacting molecules that prevents DNA replication and cell division under unfavorable conditions. Disruptions in the intricate balance between components of this network may lead to cancer; however, interfering with signals transmitted by the cell cycle signaling network is an important tool for cancer therapy. A better understanding of the cell cycle is fundamental to the development of rational, knowledge-based strategies to combat cancer and utilize stem cells to improve human health. To study cell cycle signaling at the chromatin level, we specify DNA sequences that determine whether, where, and when replication will occur. DNA sequences that determine the location of replication initiation are called replicators. Replicators are identified by their ability to start replication when transferred from their original genomic locus to ectopic genomic sites [Aladjem, MI, et al. Science 281: 1005-9, 1998]. Genetic dissection of replicators (see Specific Aim 1) delineates the sequence requirements for starting DNA replication. This year we have started a detailed analysis of DNA-protein interactions of these sequences. We also report (Specific Aim 2) that the timing of DNA replication during the S-phase of the cell cycle can be altered [Lin CM, et al. Curr Biol 13: 1019-28, 2003]. We now alter replication timing as a tool to elucidate genetic and epigenetic factors that determine replication timing. We have recently started to use single molecule analyses of DNA replication to determine replication timing of particular sequences (Specific Aim 2) and to evaluate the effect of changes in metabolic conditions and exposure to anti-cancer drugs on initiation patterns [Shimura T, et al. J Mol Biol 367: 665-80, 2007; 375:1152-64m 2008] (Specific Aim 3). The studies outlined above provide insights into the interactions of the cell cycle machinery with chromatin to control DNA replication during normal growth and in response to replication-perturbing drugs. Below is a summary of recent findings, summarized briefly for each specific aim. 1) Characterization of replicators, genetic elements that affect the location of replication initiation. We have established that the replication initiation region within the human beta-globin locus contains two independent, non-overlapping replicators and have identified sequence motifs that are required for initiation of DNA replication within these replicators [Wang L, et al. Mol Cell Biol 24, 3373-86, 2004]. At the beta-globin locus, those sequence motifs interact with each other to determine the location of replication initiation events, implying a modular structure for mammalian replicators [Wang L, et al. Hum Mol Genet 15: 2613-22, 2006]. The above studies are in line with the emerging understanding that replication patterns in metazoans are dynamically regulated by a combination of sequence and epigenetic modifications [Aladjem MI. Nat Rev Genet 8: 588-600, 2007]. Our recent observations suggest that replicators bind particular proteins at specific stages of the cell cycle. Our current efforts include identification and characterization of replicator-binding proteins and protein complexes and elucidation of the role of such protein-DNA interactions in the early stages of DNA replication. 2) Analysis of the effect of DNA sequence and chromatin structure on replication timing. We have identified DNA sequences that affect the timing of DNA replication [Lin CM, et al. Curr Biol 13: 1019-28, 2003; Feng YQ, et al. Mol Cell Biol 25: 3864-74, 2007] and have shown that the timing of DNA replication correlates with the status of chromatin condensation and with epigenetic factors, such as methylation of CpG sequences [Feng YQ, et al. PLoS Genet 2, e65, 2006] and histone modifications [Lin CM, et al. Curr Biol 13: 1019-28, 2003; Fu H, et al. Nat Biotechnol 24: 572-6, 2006]. Tissue-specific patterns of replication timing can be conserved in evolution even in loci that do not conserve replication initiation patterns [Aladjem MI, et al. Mol Cell Biol 22: 442-5, 2002]. We have shown that functional replicator sequences (but not mutated replicators) prevented gene silencing and replication delay and prohibited chromatin condensation [Fu H, et al. Nat Biotechnol 24: 572-6, 2006]. Ongoing studies focus on the characterization of point mutations in replicator sequences on the timing of DNA replication and on the applicability of our initial findings to the stabilization of gene expression using genes with therapeutic relevance. 3) Identification of cellular signaling interactions induced by the perturbation of DNA replication. We have uncovered a cellular response pathway involving BLM helicase, Mus81 nuclease, ATR kinase and the non-homologous recombination cascade. This pathway responds to perturbation of DNA replication following exposure to mild drug-induced perturbation of DNA replication, which is below the threshold of the cell cycle checkpoint response. Cells that are exposed to mild perturbation of DNA replication exhibit transient DNA breaks that are formed by Mus81 with the cooperation of BLM helicase and ATR kinase [Shimura T, et al. J Mol Biol 375: 1152-64, 2008]. In cells that contain an intact nonhomologous end-joining pathway, these DNA breaks are transient and cells rapidly resume replication in the presence of the inhibitor, albeit at a slow rate. DNA breaks persist in cells that are deficient in components of the nonhomologous end-joining pathway such as DNA-PK and XRCC4; such cells are unable to resume DNA replication and activate a cell cycle checkpoint response after a mild inhibition of DNA synthesis [Shimura T, et al. J Mol Biol 367: 665-80, 2007]. These recent findings propose that replication-induced DNA breaks do not always arise passively from polymerase collisions; breaks can also form as intermediates in the resolution of perturbed replication.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
mirit aladjem其他文献
mirit aladjem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('mirit aladjem', 18)}}的其他基金
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8552687 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8348998 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
10926012 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
7733086 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
10014364 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory
分子相互作用图谱和生物调节分析
- 批准号:
7338658 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
8763137 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
8937770 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8937729 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
8349049 - 财政年份:
- 资助金额:
$ 96.68万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 96.68万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 96.68万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 96.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 96.68万 - 项目类别:
Studentship