Initiation of DNA Replication in Mammalian Cells

哺乳动物细胞中 DNA 复制的启动

基本信息

  • 批准号:
    8937729
  • 负责人:
  • 金额:
    $ 119.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Within eukaryotic cells, genome duplication initiates at multiple sites on each chromosome. Replication initiation events in diploid mitotic cells proceed in a precise order and are strictly regulated by a series of cell cycle checkpoint signaling pathways. Some of these regulatory constraints, however, are often relaxed in cancer cells. Because the processes that coordinate replication ultimately converge on chromatin, understanding the molecular events that precede DNA replication at the chromatin level is crucial if we are to fully understand cell growth. Critical information about this process is missing because protein complexes that initiate chromosomal replication seem to bind DNA indiscriminately. To gain a complete understanding of the DNA replication process we must resolve how this non-specific DNA binding translates into highly coordinated replication. Our studies are based on the hypothesis that sequence-specific signaling molecules associate with replication initiation sites on chromatin where they modulate the local activity of the ubiquitous replication machinery and dictate both the location and timing of replication initiation events. To test this hypothesis, we characterize protein-DNA interactions at replication initiation sites and identify interactions that play regulatory roles in the DNA replication process. We use two approaches to characterize DNA-protein interactions at replication initiation sites. The first approach utilizes distinct DNA sequences, termed replicators, which facilitate the initiation of DNA replication. We have initially identified these replicator sequences and we now use them as bait to isolate protein complexes that potentially regulate replication. In recent studies we have identified two discrete DNA-protein complexes within one replicator element. One of these complexes includes chromatin remodeling proteins that determine both replication timing and transcriptional activity (Mol Cell Biol. 31:3472-84). Another complex includes RepID, a member of the DDB1-Cul4-associated-factor (DCAF) family, which binds a subset of replication initiation sites and is required for replication at those sites. Our studies have demonstrated that RepID associates with chromatin-loop interactions between a replicator element and a distal regulatory sequence within the human beta globin (HBB) locus. This year, we have developed the methodology to characterize RepID interactions with other proteins, identified RepID protein partners using a non-biased approach and pinpointed protein domains within RepID that facilitate DNA-protein and protein-protein interactions. The second approach involves developing tools to map replication initiation sites throughout the genome, and using these tools to analyze DNA replication in the context of chromatin modifications and transcriptional activity. The developed methods involve massively parallel sequencing and single-fiber imaging of replication fork progression. These procedures allow us to study the dynamics of DNA replication at the whole-genome level. Using this methodology we can test whether groups of replication initiation sites share specific properties - for example, if they associate with a particular chromatin feature. We can also identify groups of initiation sites that respond in a similar fashion to a cellular challenge, and test whether distinct groups of replication initiation sites are regulated through association with particular proteins (such as RepID). Our recent studies generated a comprehensive dataset of replication initiation sites for several human cancer cell lines (Genome Res. 21:1822-32). We also identified a positive correlation between replication initiation and CpG methylation, and a negative correlation between replication and high levels of transcription. We also used genome-wide data to identify DNA and histone modifications that associate with replication initiation events. We also used genome-wide data to identify DNA and histone modifications that associate with replication initiation events. For example, we observed strong associations between replication initiation and both DNAse hypersensitive sites and dimethylated histone H3 lysine 79, which exhibits a dynamic cell cycle distribution (PLoS Genet. 9:e1003542). This year, we have also performed collaborative studies demonstrating that replication timing patterns correlate with global patterns of replication initiation sites (PLoS Genet. 9:e1003542). Concomitantly, we participated in a collaborative theoretical simulation study demonstrating that the locations of replication initiation sites could provide a sufficient framework for determination of replication timing, and no special replication timing program was required Mol Syst Biol. 10:722). We plan to continue our combined studies at the local and whole genome level to identify proteins that modify chromatin or modulate distal interactions to determine replication initiation sites and dictate replication timing. We previously observed that mild exposure to replication inhibitors decelerate replication via mechanisms that involve the cancer-predisposing proteins BLM helicase, Mus81 nuclease, and ATR kinase (J Mol Biol. 375: 1152). We have recently observed that Mus81 endonuclease activity also affects the normal pace of DNA replication and the frequency of replication initiation during unchallenged growth. In contrast, ELG1/ATAD5, which is also involved in cellular responses to perturbed replication, did not affect replication initiation rates (J Cell Biol. 200:31). These results imply that enzymes previously thought to be DNA repair specialists may participate in surveillance mechanisms that regulate DNA replication during unperturbed growth. In other collaborative studies, we have demonstrated that the retinoblastoma/E2F pathway plays a role in the regulation of replication patterns during murine development (Mol Cell Biol. 34:2833). In the future we will investigate how protein-DNA interactions that are required for DNA replication are modulated in response to environmental challenges and anti-cancer drugs.
在真核细胞中,基因组复制始于每条染色体上的多个位点。二倍体有丝分裂细胞的复制起始事件按照精确的顺序进行,并受到一系列细胞周期检查点信号通路的严格调控。然而,其中一些调控约束在癌细胞中通常是放松的。因为协调复制的过程最终集中在染色质上,所以如果我们要充分了解细胞生长,了解染色质水平上DNA复制之前的分子事件是至关重要的。由于启动染色体复制的蛋白质复合物似乎不加选择地结合DNA,因此关于这一过程的关键信息缺失。为了全面了解DNA复制过程,我们必须解决这种非特异性DNA结合如何转化为高度协调的复制。我们的研究基于这样的假设,即序列特异性信号分子与染色质上的复制起始位点相关,在染色质上,它们调节无处不在的复制机制的局部活性,并决定复制起始事件的位置和时间。为了验证这一假设,我们表征了复制起始位点的蛋白质-DNA相互作用,并确定了在DNA复制过程中发挥调节作用的相互作用。我们使用两种方法来表征dna -蛋白质在复制起始位点的相互作用。第一种方法利用不同的DNA序列,称为复制因子,促进DNA复制的开始。我们已经初步确定了这些复制子序列,现在我们用它们作为诱饵来分离可能调节复制的蛋白质复合物。在最近的研究中,我们在一个复制因子元件中确定了两个离散的dna -蛋白质复合物。其中一种复合体包括染色质重塑蛋白,它决定复制时间和转录活性(Mol Cell Biol. 31:3472-84)。另一个复合体包括RepID,它是ddb1 - cul4相关因子(DCAF)家族的成员,它结合复制起始位点的一个子集,并且是在这些位点进行复制所必需的。我们的研究表明,RepID与复制子元件与人类β -珠蛋白(HBB)位点内远端调控序列之间的染色质环相互作用有关。今年,我们开发了表征RepID与其他蛋白质相互作用的方法,使用无偏见的方法鉴定了RepID蛋白质伴侣,并确定了RepID中促进dna -蛋白质和蛋白质-蛋白质相互作用的蛋白质结构域。第二种方法涉及开发工具来绘制整个基因组的复制起始位点,并使用这些工具来分析染色质修饰和转录活性背景下的DNA复制。发展的方法包括大规模并行测序和复制叉进程的单纤维成像。这些程序使我们能够在全基因组水平上研究DNA复制的动力学。使用这种方法,我们可以测试一组复制起始位点是否共享特定的属性——例如,它们是否与特定的染色质特征相关联。我们还可以确定以类似方式响应细胞挑战的起始位点组,并测试是否通过与特定蛋白质(如RepID)的关联来调节不同组的复制起始位点。我们最近的研究生成了几种人类癌细胞系复制起始位点的综合数据集(Genome Res. 21:1822-32)。我们还发现了复制起始与CpG甲基化之间的正相关,复制与高水平转录之间的负相关。我们还使用全基因组数据来鉴定与复制起始事件相关的DNA和组蛋白修饰。我们还使用全基因组数据来鉴定与复制起始事件相关的DNA和组蛋白修饰。例如,我们观察到复制起始与DNAse超敏感位点和二甲基化组蛋白H3赖氨酸79之间存在很强的关联,这表现出动态的细胞周期分布(PLoS Genet. 9:e1003542)。今年,我们还进行了合作研究,证明复制时间模式与复制起始位点的整体模式相关(PLoS Genet. 9:e1003542)。同时,我们参与了一项合作的理论模拟研究,证明复制起始位点的位置可以为确定复制时间提供足够的框架,并且不需要特殊的复制时间程序(Mol Syst Biol. 10:722)。我们计划在局部和全基因组水平上继续我们的联合研究,以鉴定修饰染色质或调节远端相互作用以确定复制起始位点和决定复制时间的蛋白质。我们之前观察到轻度暴露于复制抑制剂通过涉及癌症易感蛋白BLM解旋酶,Mus81核酸酶和ATR激酶的机制减慢复制(J Mol Biol. 375: 1152)。我们最近观察到Mus81内切酶活性也影响DNA复制的正常速度和在无挑战生长期间开始复制的频率。相比之下,ELG1/ATAD5也参与细胞对受干扰复制的反应,但不影响复制起始率(J Cell Biol. 2000:31)。这些结果表明,以前被认为是DNA修复专家的酶可能参与了在不受干扰的生长过程中调节DNA复制的监视机制。在其他合作研究中,我们已经证明视网膜母细胞瘤/E2F通路在小鼠发育过程中调节复制模式中发挥作用(Mol Cell Biol. 34:2833)。在未来,我们将研究如何调节DNA复制所需的蛋白质-DNA相互作用,以应对环境挑战和抗癌药物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

mirit aladjem其他文献

mirit aladjem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('mirit aladjem', 18)}}的其他基金

Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
  • 批准号:
    8552687
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
  • 批准号:
    8348998
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
  • 批准号:
    10926012
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
  • 批准号:
    7733086
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
  • 批准号:
    10014364
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory
分子相互作用图谱和生物调节分析
  • 批准号:
    7338658
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
  • 批准号:
    8763137
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
  • 批准号:
    8937770
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
  • 批准号:
    7965300
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory
分子相互作用图谱和生物调节分析
  • 批准号:
    7291872
  • 财政年份:
  • 资助金额:
    $ 119.26万
  • 项目类别:

相似海外基金

Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
  • 批准号:
    9975367
  • 财政年份:
    2020
  • 资助金额:
    $ 119.26万
  • 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
  • 批准号:
    16K11932
  • 财政年份:
    2016
  • 资助金额:
    $ 119.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
  • 批准号:
    19591274
  • 财政年份:
    2007
  • 资助金额:
    $ 119.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
  • 批准号:
    6346309
  • 财政年份:
    2000
  • 资助金额:
    $ 119.26万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    2720213
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    6513197
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    7101017
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    6894842
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    2885074
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    6174221
  • 财政年份:
    1999
  • 资助金额:
    $ 119.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了