Next generation measurement of the electron electric dipole moment with heavy molecules.

重分子电子电偶极矩的下一代测量。

基本信息

  • 批准号:
    PP/D00425X/1
  • 负责人:
  • 金额:
    $ 54.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

I'm doing research into the relationship between matter and antimatter. This relationship is one of the biggest mysteries in physics today. But before I get on to explaining why it's such a big mystery, I should explain a little about what antimatter is. All of the matter around us is made up of protons, neutrons and electrons. These subatomic particles combine together to make atoms, the elements, and then these atoms combine together to make everything we see around us, solid, liquid and gas. But this isn't the end of the subatomic story. As we've looked more carefully we've discovered that as well as protons, neutrons and electrons there are many more, much more elusive, subatomic particles. We've found these particles in odd places: in cosmic ray showers, some kinds of nuclear decays, and in the remnants of atoms that have been smashed in particle colliders. Physicists have tried to explain how these particles relate to one another, to bring order to the particle zoo. And they've been spectacularly succesful, coming up with a theory that is called the Standard Model. This Standard Model brings order to the hundreds of subatomic particles that we've discovered, sorting them into families with regular patterns, predicting their properties with incredible accuracy. It's one of the great triumphes of twentieth century physics. Now I can explain what antimatter is. One of the most striking features of the Standard Model is that it arranges the particles into pairs. Every particle has a partner with the opposite electrical charge called an anti-particle. These anti-particles are what we call antimatter. The Standard Model predicts that these anti-particles should obey all the same rules that normal particles do. Experiments have confirmed this, that particles and antiparticles behave in a very symmetric way. What goes for one goes for the other. This is the big mystery! If matter and antimatter obey just the same laws, if particles of matter and antimatter come in pairs, then where's all the antimatter? We would expect that there should be just as much of it as there is normal matter. But there's not. The whole world is made almost entirely of normal matter, with only tiny traces of antimatter. Astronomers have looked right to the edge of the visible universe and even then they see just matter, no great stashes of anitmatter. What happened to all the antimatter? It's this question that we are trying to answer. We hope to answer it by searching for tiny differences between the behaviour of matter and antimatter. Could these tiny differences be responsible for the near extinction of antimatter over the billions of years that the universe has been evolving? We've decided to study electrons. We can think of the electron as a little ball of electrical charge. What we do is measure whether this ball is round or not. Now, this might sound completely unrelated to the question of antimatter, but it's not. We have very strong evidence that tells us that unless electrons are _perfectly_ round, the matter and antimatter _can't_ behave in exactly the same way. So by making a very careful measurement of the electron's shape we can infer something about the nature of antimatter. All without having to make or use any actual antimatter - I think this is very elegant! So far we've checked the roundness of the electron to an incredible degree of precision: the equivalent would be measuring the diameter of the earth to better than the width of one human hair. And so far, we've seen no evidence of non-roundness. What we're planning on doing in the next few years is using some of the latest developments in atomic and molecular physics to make our experiment 1000 times more precise. With this increased precision we think we might be able to see a tiny deviation from perfect roundness and hopefully explain the mystery of the antimatter.
我在研究物质和反物质之间的关系。这种关系是当今物理学中最大的谜团之一。但在我解释为什么它是一个如此大的谜团之前,我应该解释一下什么是反物质。我们周围的所有物质都是由质子、中子和电子组成的。这些亚原子粒子联合收割机结合在一起形成原子,元素,然后这些原子联合收割机结合在一起形成我们周围的一切,固体,液体和气体。但这并不是亚原子故事的结束。当我们更仔细地观察时,我们发现除了质子、中子和电子之外,还有更多、更难以捉摸的亚原子粒子。我们在一些奇怪的地方发现了这些粒子:在宇宙射线簇射中,在某些核衰变中,在粒子对撞机中被粉碎的原子残余物中。物理学家试图解释这些粒子是如何相互关联的,以便为粒子动物园带来秩序。他们非常成功,提出了一个理论,叫做标准模型。这个标准模型为我们发现的数百种亚原子粒子带来了秩序,将它们按规则模式分类,以令人难以置信的准确度预测它们的属性。这是世纪物理学的伟大成就之一。现在我可以解释什么是反物质了。标准模型最显著的特征之一是它将粒子成对排列。每个粒子都有一个带相反电荷的伙伴,称为反粒子。这些反粒子就是我们所说的反物质。标准模型预测,这些反粒子应该遵守与正常粒子相同的规则。实验已经证实了这一点,即粒子和反粒子的行为是非常对称的。对一方有利的事对另一方也有利。这是最大的谜团!如果物质和反物质遵循同样的定律,如果物质和反物质的粒子成对出现,那么所有的反物质在哪里?我们可以预期,它的数量应该和正常物质一样多。但是没有。整个世界几乎完全由正常物质组成,只有微量的反物质。天文学家们已经看到了可见宇宙的边缘,即使这样,他们也只看到了物质,没有大量的反物质。所有的反物质都去哪了?这是我们试图回答的问题。我们希望通过寻找物质和反物质行为之间的微小差异来回答这个问题。这些微小的差异可能是宇宙进化数十亿年来反物质几乎灭绝的原因吗?我们决定研究电子。我们可以把电子看作一个带电的小球。我们所做的是测量这个球是否是圆的。现在,这听起来可能与反物质的问题完全无关,但事实并非如此。我们有非常有力的证据告诉我们,除非电子是完美的圆形,否则物质和反物质的行为不可能完全相同。所以通过仔细测量电子的形状,我们可以推断出反物质的性质。所有这些都不需要制造或使用任何实际的反物质-我认为这是非常优雅的!到目前为止,我们已经以令人难以置信的精度检查了电子的圆度:相当于测量地球的直径,比人类头发的宽度还要好。到目前为止,我们还没有看到非圆的证据。在接下来的几年里,我们计划使用原子和分子物理学的最新发展,使我们的实验精确1000倍。随着精确度的提高,我们认为我们可能能够看到与完美圆形的微小偏差,并有望解释反物质的奥秘。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffusion, thermalization, and optical pumping of YbF molecules in a cold buffer-gas cell
冷缓冲气体池中 YbF 分子的扩散、热化和光泵浦
  • DOI:
    10.1103/physreva.83.023418
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Skoff S
  • 通讯作者:
    Skoff S
Pulsed beams as field probes for precision measurement
脉冲束作为现场探针进行精密测量
  • DOI:
    10.1103/physreva.76.033410
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Hudson J
  • 通讯作者:
    Hudson J
Stochastic multi-channel lock-in detection
随机多通道锁定检测
  • DOI:
    10.1088/1367-2630/16/1/013005
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hudson J
  • 通讯作者:
    Hudson J
A robust floating nanoammeter.
坚固的浮动纳安表。
Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals
缓冲气体冷却分子自由基的无多普勒激光光谱
  • DOI:
    10.1088/1367-2630/11/12/123026
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Skoff S
  • 通讯作者:
    Skoff S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Hudson其他文献

A Chatbot Won't Judge Me: An Exploratory Study of Self-disclosing Chatbots in Introductory Computer Science Classes
聊天机器人不会评判我:计算机科学入门课程中自我披露聊天机器人的探索性研究
Society for Cardiovascular Magnetic Resonance 2023 Cases of SCMR case series
心血管磁共振学会 2023 年 SCMR 病例系列病例
  • DOI:
    10.1016/j.jocmr.2024.101086
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Jason N. Johnson;Cara Hoke;Anna Lisa Chamis;Michael Jay Campbell;Addison Gearhart;Sarah D. de Ferranti;Rebecca Beroukhim;Namrita Mozumdar;Mark Cartoski;Shannon Nees;Jonathan Hudson;Sorayya Kakhi;Yousef Daryani;W. Savindu Pasan Botheju;Keyur B. Shah;Mohammed Makkiya;Michelle Dimza;Diego Moguillansky;Mohammad Al-Ani;Andrew Andreae;Sylvia S.M. Chen
  • 通讯作者:
    Sylvia S.M. Chen
591 HUMAN BIOPSY-DERIVED COLONOIDS ARE USEFUL TO STUDY LUMINAL <em>C DIFFICILE</em> INFECTION AND THE RELATIVE BENEFIT OF ACTOXUMAB OR BEZLOTOXUMAB.
  • DOI:
    10.1016/s0016-5085(20)30997-5
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mary Beth Yacyshyn;Jonathan Hudson;Bruce Yacyshyn
  • 通讯作者:
    Bruce Yacyshyn
Sa1116 BISMUTH SUBSALICYLATE ALTERS THE EFFECTS OF CHOLERA TOXIN IN A HUMAN COLONOID MODEL.
  • DOI:
    10.1016/s0016-5085(20)31390-1
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mary Beth Yacyshyn;Jonathan Hudson;Adam Pitz;Jose M. Brum;Bruce Yacyshyn
  • 通讯作者:
    Bruce Yacyshyn

Jonathan Hudson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
  • 批准号:
    10682295
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
Nanoluciferase reporter phage for rapid phenotypic characterization of resistance to next-generation antimycobacterial agents
纳米荧光素酶报告噬菌体用于快速表征下一代抗分枝杆菌药物的耐药性
  • 批准号:
    10593796
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
  • 批准号:
    10515612
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
CAREER: Next-Generation Active Internet Measurement
职业:下一代主动互联网测量
  • 批准号:
    2239183
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
    Continuing Grant
High-speed 3D Image Measurement System Toward Next Generation Endoscopy
面向下一代内窥镜的高速 3D 图像测量系统
  • 批准号:
    23H03417
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Flexible High-Throughput Immunological Assay to Support Next-Generation Influenza Vaccine Studies
灵活的高通量免疫分析支持下一代流感疫苗研究
  • 批准号:
    10655239
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
Advanced thin-slab TOF-PET detector module for next generation of brain PET
用于下一代大脑 PET 的先进薄板 TOF-PET 探测器模块
  • 批准号:
    10719570
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
Rapid phenotypic detection of complex and emergent TB drug-resistance using a next-generation nanoluciferase reporter phage
使用下一代纳米荧光素酶报告噬菌体快速表型检测复杂和突发的结核病耐药性
  • 批准号:
    10662977
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
Development of Position Measurement System for Cryogenic Mirror by Telephoto Camera toward Gravitational Wave Telescope of Next Generation
下一代引力波望远镜长焦相机低温镜位置测量系统的研制
  • 批准号:
    23K13120
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Next-Generation Whole-Body MRI for Detection and Assessment of Therapy Response in Bone Lesions
用于检测和评估骨病变治疗反应的新一代全身 MRI
  • 批准号:
    10716642
  • 财政年份:
    2023
  • 资助金额:
    $ 54.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了