Geometrical Approaches to Particle Phenomenology: from String Compactification to Supersymmetric Gauge Theories

粒子现象学的几何方法:从弦紧化到超对称规范理论

基本信息

  • 批准号:
    PP/E006159/1
  • 负责人:
  • 金额:
    $ 54.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The eyes of the physics community are turning toward Geneva. In about a year or, the largest particle accelerator and indeed the largest machine known to man, will be turned on. Its purpose, is to smash particles at such a speed and energy that we would be taking a glimpse at the sub-atomic world in a hitherto unfathomed clarity. Data will stream in at an alarming rate. Are we prepared? In a way, we have been preparing for two decades. Since a golden era of particle physics in the 60's nad 70's, what is known as the Standard Model (SM) has been measured and tested to breathtaking accuracy in its description of the microcosm of elementary particles. However, there is a catch. The SM has a number of arbitrary parameters which hint at a more natural, unified theory. More seriously, the SM, in all its glory, has encountered uncurable problems in being compatible with the theory of gravity, the force responsible for the macrocosmic world. Is there a unified theory? Albert Einstein, with prophetic vision, had spent the last of his years trying desperately to find this theory. In comes String Theory. By the mid-80's it was realised that this theory, constituting a fundamental paradigm shift in understanding physics, was a natural unification of gravity with the SM, of the large-scale with the small-scale. It proposes that all particles are different vibration modes of tiny strings, different notes, if you will, of a cosmic symphony. In this symphony, all forces, all interactions, all particles, and indeed all space and time, harmoniously unify. Again, there is a catch. The theory only makes sense in 10 dimensions, as opposed to the three plus one (for time) with which we are familiar. Moreover, the strings are so small that we may never be able to directly detect them. My research is on where the missing 6 dimensions are (after all, 10 minus 4 is equal to 6), what are their properties, and, indeed, how they determine the world we see, assuming that string theory were to be the unified theory of everything. These extra dimensions curl up in specific geometric ways and I have been involved in applying the cutting-edge results from the mathematicians, from the higher-dimensional geometers, to constructing theories which resemble (or, hopefully, exactly reproduce) the SM. The theories which we produce, from these 6-dimensional spaces, all have a special property which is yet to be observed. This is called supersymmetry. It is a proposal that every elementary particle we have thus far seen, comes with a 'super'-partner yet to be been. I have been studying how to obtain a supersymmetric version of the SM from string theory and have had some success. Earlier this year, my collaborators and I have found a special 6-dimensional geometry which gives just the right particles! We know that such geometry is rare since of the thousands of models constructed from string theory and of the infinite number of possibilities for the 6-dimensional space, this is the only one that has exactly the right particles, no more and no less. There remains much to be done. We must work out the details of this model and especially ascertain how special our geometry is and whether there are other possibilities. A key goal of the machine at Geneva is to test signatures of supersymmetry. Checking our model against the influx of data is of vital importance. The Theoretical Physics Department at Oxford is a unique place, in that it has some of the founding members who initiated this study of trying to bring string theory to produce the SM interaction of particles, and in that it neighbours the Mathematical Institute, which is a world center for geometry. With these members of both departments I am currently collaborating. The dynamic interaction is precisely geared to my using the latest advanced in geometry to answer perhaps most pressing issue of particle physics, in light of the Geneva data: 'how does string theory produce the SM?'
物理学界的目光正转向日内瓦。大约一年后,世界上最大的粒子加速器,也是人类所知的最大的机器将被启动,它的目的是以这样的速度和能量粉碎粒子,使我们能够以迄今为止无法理解的清晰度瞥见亚原子世界。数据将以惊人的速度流入。我们准备好了吗?在某种程度上,我们已经准备了二十年。自60年代和70年代粒子物理学的黄金时代以来,标准模型(SM)在描述基本粒子的微观世界方面已经被测量和测试到惊人的准确性。然而,有一个陷阱。SM有许多任意的参数,暗示着一个更自然、统一的理论。更严重的是,SM在其所有的荣耀中,在与引力理论兼容方面遇到了无法治愈的问题,引力是负责宏观宇宙世界的力量。有统一的理论吗?阿尔伯特·爱因斯坦具有预见性的远见,他在生命的最后几年里一直在拼命寻找这个理论。弦理论(String Theory)到了80年代中期,人们意识到这个理论构成了理解物理学的基本范式转变,是引力与SM的自然统一,是大尺度与小尺度的自然统一。它提出,所有粒子都是微小弦的不同振动模式,宇宙交响乐的不同音符。在这首交响曲中,所有的力、所有的相互作用、所有的粒子,甚至所有的空间和时间,都和谐地统一起来。又是一个陷阱。这个理论只在10维中有意义,而不是我们熟悉的3 + 1(时间)。此外,弦是如此之小,我们可能永远无法直接检测到它们。我的研究是缺失的6维在哪里(毕竟,10减4等于6),它们的性质是什么,以及它们如何决定我们所看到的世界,假设弦理论是万物的统一理论。这些额外的维度以特定的几何方式卷曲,我一直参与应用数学家的前沿成果,从高维几何学家那里,构建类似(或者,希望,完全复制)SM的理论。我们从这些6维空间产生的理论都有一个特殊的性质,这个性质还有待观察。这就是所谓的超对称性。这是一种假设,即我们迄今为止看到的每一个基本粒子都有一个尚未出现的“超级”伙伴。我一直在研究如何从弦理论中获得SM的超对称版本,并取得了一些成功。今年早些时候,我和我的合作者发现了一种特殊的6维几何,它给出了正确的粒子!我们知道,这样的几何是罕见的,因为在弦论构建的成千上万个模型中,在6维空间的无限可能性中,这是唯一一个有正确粒子的模型,不多不少,还有很多工作要做。我们必须弄清楚这个模型的细节,特别是确定我们的几何形状有多特殊以及是否还有其他可能性。这台位于日内瓦的机器的一个关键目标是测试超对称性的特征。检查我们的模型是否与大量涌入的数据保持一致至关重要。牛津大学的理论物理系是一个独特的地方,因为它有一些创始成员,他们发起了这项研究,试图将弦理论用于产生粒子的SM相互作用,并且它毗邻数学研究所,这是世界几何中心。目前,我正在与这两个部门的成员合作。动态相互作用正好适合我使用最新的几何学进展来回答粒子物理学中最紧迫的问题,根据日内瓦的数据:“弦理论如何产生SM?'

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heterotic Compactification, An Algorithmic Approach
  • DOI:
    10.1088/1126-6708/2007/07/049
  • 发表时间:
    2007-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    L. Anderson;Yang-Hui He;A. Lukas
  • 通讯作者:
    L. Anderson;Yang-Hui He;A. Lukas
Triadophilia: A Special Corner in the Landscape
Triadophilia:景观中的一个特殊角落
  • DOI:
    10.4310/atmp.2008.v12.n2.a6
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Candelas;Xenia de la Ossa;Yang;Balázs Szendrői
  • 通讯作者:
    Balázs Szendrői
Dimer models from mirror symmetry and quivering amoebæ
来自镜像对称和颤动阿米巴的二聚体模型
Monad bundles in heterotic string compactifications
  • DOI:
    10.1088/1126-6708/2008/07/104
  • 发表时间:
    2008-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    L. Anderson;Yang-Hui He;A. Lukas
  • 通讯作者:
    L. Anderson;Yang-Hui He;A. Lukas
A quantum framework for likelihood ratios
似然比的量子框架
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang-Hui He其他文献

BPS spectroscopy with reinforcement learning
基于强化学习的宽带光声光谱技术 (备注:这里BPS推测为Broadband Photoacoustic Spectroscopy的缩写,具体要结合上下文确定准确含义。 )
  • DOI:
    10.1016/j.physletb.2025.139646
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Federico Carta;Asa Gauntlett;Finley Griffin;Yang-Hui He
  • 通讯作者:
    Yang-Hui He
From the String Landscape to the Mathematical Landscape: a Machine-Learning Outlook
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang-Hui He
  • 通讯作者:
    Yang-Hui He
Machine-Learning Mathematical Structures
  • DOI:
    10.1142/s2810939222500010
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang-Hui He
  • 通讯作者:
    Yang-Hui He
Graph Zeta function and gauge theories
  • DOI:
    10.1007/jhep03(2011)064
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yang-Hui He
  • 通讯作者:
    Yang-Hui He
The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

Yang-Hui He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang-Hui He', 18)}}的其他基金

Geometrical Approaches to Particle Phenomenology: from String Compactification to Supersymmetric Gauge Theories
粒子现象学的几何方法:从弦紧化到超对称规范理论
  • 批准号:
    PP/E006159/2
  • 财政年份:
    2010
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Fellowship

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Data-driven approaches for in-line monitoring of particle attributes in chemical and pharmaceutical manufacturing processes.
用于在线监测化学和制药制造过程中颗粒属性的数据驱动方法。
  • 批准号:
    2748830
  • 财政年份:
    2022
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Studentship
Alternative Approaches to Interstellar Flight using Particle Momentum Flux
使用粒子动量通量进行星际飞行的替代方法
  • 批准号:
    562423-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 54.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Particle engineering approaches to control the interaction of medicinal aerosols with the lung environment following inhalation
控制药用气溶胶吸入后与肺部环境相互作用的颗粒工程方法
  • 批准号:
    2277525
  • 财政年份:
    2019
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Studentship
Supramolecular approaches for phase organization, particle formation, disintegration, and drug binding capacity in depsipeptide-based nanocarriers (A03)
基于缩肽的纳米载体的相组织、颗粒形成、崩解和药物结合能力的超分子方法 (A03)
  • 批准号:
    240237147
  • 财政年份:
    2013
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Collaborative Research Centres
Novel approaches for quantifying the highly uncertain thermodynamics and kinetics of atmospheric gas-to-particle conversion
量化大气气体到颗粒转化的高度不确定的热力学和动力学的新方法
  • 批准号:
    NE/J02175X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Research Grant
Distributional Approaches to Semantic Relatedness: German Noun-Noun Compounds and Particle Verbs
语义相关性的分布方法:德语名词-名词复合词和助词动词
  • 批准号:
    192344532
  • 财政年份:
    2011
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Heisenberg Fellowships
Machine learning approaches for analyzing particle collider data
用于分析粒子对撞机数据的机器学习方法
  • 批准号:
    399914-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 54.75万
  • 项目类别:
    University Undergraduate Student Research Awards
Geometrical Approaches to Particle Phenomenology: from String Compactification to Supersymmetric Gauge Theories
粒子现象学的几何方法:从弦紧化到超对称规范理论
  • 批准号:
    PP/E006159/2
  • 财政年份:
    2010
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Fellowship
Career Program: New Approaches of Holographic Particle Velocimetry for Studying Turbulence
职业计划:研究湍流的全息粒子测速新方法
  • 批准号:
    9996402
  • 财政年份:
    1999
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Continuing Grant
Career Program: New Approaches of Holographic Particle Velocimetry for Studying Turbulence
职业计划:研究湍流的全息粒子测速新方法
  • 批准号:
    9625307
  • 财政年份:
    1996
  • 资助金额:
    $ 54.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了