Detection of ultra high energy cosmic ray neutrinos with ANITA and investigation of future large-scale detectors

ANITA 探测超高能宇宙线中微子及未来大型探测器研究

基本信息

  • 批准号:
    PP/E006876/1
  • 负责人:
  • 金额:
    $ 35.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Neutrinos are the second most abundant fundamental particle in the universe. They are produced by the sun as a by-product of the nuclear reactions powering the sun and on earth from radioactive decays. They are also produced in the upper atmosphere from the decays of the unstable particles that are produced by cosmic ray interactions. Neutrinos can thus tell us something about cosmic rays which in general we do not have a very complete understanding of. Cosmic rays are the particles produced amongst other things by exploding stars and are probably mostly protons but may also be heavier nuclei - we don't know yet and understanding their composition and energy can give us an insight into the nature of different star and galaxy types. Detecting neutrinos tells us about the nature of the universe and detecting the most energetic neutrinos tells us something about the most violent (and generally rarest) events in the universe. Neutrinos carry no charge, are almost massles and so only interact very weakly with their surroundings - indeed if the space between the earth and the sun was filled with lead, the neutrinos from the sun would still get to the earth - you would need a million times that distance of lead to stop the neutrinos ! Neutrinos can therefore travel from the very edges of the universe and thus from the earliest times and still reach the earth. Other particles cannot do this since they tend to get bent away by the magnetic fields of stars or planets or absorbed by the electromagnetic radiation that pervades the universe. This electromagnetic radiation is a remnant of the big bang and responsible for 1% of the interference you get on your analog TV picture and its precise measurement was just awarded the 2006 Nobel Prize in physics. Neutrinos can provide information that other particles cannot. Higher energy neutrinos tend to get absorbed easier than lower energy neutrinos and so we should not see extremely high energy neutrinos from very distant sources. If we see very high energy neutrinos (above the so-called GZK cut-off) then they are being produced locally (close to our own galaxy) by a mechanism that involves new physics - either a new exotic way of accelerating a particle quickly or from the decay of a new fundamental particle that is yet to be detected. The theories that seek to describe the large scale nature of the universe and the quantum workings inside the atom are termed grand unified theories and they tend to predict the existence of new heavy, unstable particles. These unstable particles can produce neutrinos when they decay, so the observation of ultra high energy neutrinos may signal new physics from a grand unified theory or a new astro-physical acceleration mechanism. This proposal is seeking to measure these ultra high energy neutrinos for the first time using the radio signal (not quite radio-1) produced as they traverse through the ice of Antartica. We are hoping to detect this signal using a NASA balloon equipped wirth radio antenna that will hover above the Antartica for a month at the end of 2006 and then again at the end of 2008. We are also seeking to design a new large scale detctor that will sit on Antartica's Ross Ice Shelf that willl be a permanent neutrino detector that will hopefully reveal the existence of new particles or some exotic secret from the distant universe.
中微子是宇宙中第二丰富的基本粒子。它们是由太阳生产的,是从放射性衰减中为太阳和地球供电的核反应的副产品。它们也是由于宇宙射线相互作用产生的不稳定颗粒的衰减而在上层大气中产生的。因此,中微子可以告诉我们一些有关宇宙射线的信息,通常我们对这些射线没有非常完整的理解。宇宙射线是通过爆炸恒星在其他事物中产生的颗粒,可能主要是质子,但也可能是较重的核 - 我们还不知道,并且了解它们的组成和能量可以使我们对不同恒星和星系类型的本质有深入的了解。检测中微子告诉我们有关宇宙的本质,并检测到最有活力的中微子告诉我们一些有关宇宙中最暴力(通常是最罕见的)事件的信息。中微子不承担任何费用,几乎是质量,因此只有与周围环境相互作用非常微弱 - 确实,如果地球和太阳之间的空间充满了铅,那么来自太阳的中微子仍然会到达地球 - 您需要一百万倍的铅距离来阻止中微子!因此,中微子可以从宇宙的边缘,因此可以从最早的时候传播,并且仍然可以到达地球。其他颗粒无法做到这一点,因为它们倾向于被恒星或行星的磁场弯曲,或者被遍布宇宙的电磁辐射所吸收。这种电磁辐射是大爆炸的残余物,是您在模拟电视图片上受到干扰的1%,其确切的测量刚刚获得了2006年诺贝尔物理学奖。中微子可以提供其他颗粒不能提供的信息。较高的能量中微子往往比低能量中微子更容易吸收,因此我们不应该从非常遥远的来源看到极高的能量中微子。如果我们看到非常高的能量中微子(在所谓的GZK临界值之上),那么它们是通过涉及新物理学的机制在本地生产的(靠近我们自己的星系) - 要么快速加速粒子的新外来方式,要么从尚待检测到的新基本粒子的衰减中加速。试图描述宇宙和原子内部量子起作用的大规模性质的理论称为统一理论,它们倾向于预测新的重型,不稳定的颗粒的存在。这些不稳定的颗粒在衰减时会产生中微子,因此对超高能量中微子的观察可能会从大统一理论或新的天体物理加速机制中向新物理学发出新的物理。该提案正在寻求使用无线电信号(不是很高的无线电1),当它们穿过Antartica的冰中时产生的无线电信号(不完全是Radio-1)。 We are hoping to detect this signal using a NASA balloon equipped wirth radio antenna that will hover above the Antartica for a month at the end of 2006 and then again at the end of 2008. We are also seeking to design a new large scale detctor that will sit on Antartica's Ross Ice Shelf that willl be a permanent neutrino detector that will hopefully reveal the existence of new particles or some exotic secret from the distant universe.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array
对阿斯卡扬射电阵列原型站的超高能中微子通量的首次限制
  • DOI:
    10.1016/j.astropartphys.2015.04.006
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Measurement of the real dielectric permittivity ? of glacial ice
测量真实介电常数 ?
  • DOI:
    10.1016/j.astropartphys.2019.01.004
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole
南极 Askaryan 射电阵列原型 EeV 中微子探测器的设计和初始性能
  • DOI:
    10.1016/j.astropartphys.2011.11.010
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Measurements of radio propagation in rock salt for the detection of high-energy neutrinos
测量岩盐中的无线电传播以探测高能中微子
IceRay: An IceCube-centered radio-Cherenkov GZK neutrino detector
  • DOI:
    10.1016/j.nima.2009.03.031
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    P. Allison;J. Beatty;P. Chen;A. Connolly;M. DuVernois;P. Gorham;F. Halzen;K. Hanson;K. Hoffman;A. Karle;J. Kelley;H. Landsman;J. Learned;C. Miki;R. Morse;R. Nichol;C. Rott;L. Ruckman;D. Seckel;G. Varner;D. Williams
  • 通讯作者:
    P. Allison;J. Beatty;P. Chen;A. Connolly;M. DuVernois;P. Gorham;F. Halzen;K. Hanson;K. Hoffman;A. Karle;J. Kelley;H. Landsman;J. Learned;C. Miki;R. Morse;R. Nichol;C. Rott;L. Ruckman;D. Seckel;G. Varner;D. Williams
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Nichol其他文献

Ryan Nichol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Nichol', 18)}}的其他基金

DUNE Construction Grant
沙丘建设补助金
  • 批准号:
    ST/S003746/1
  • 财政年份:
    2019
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
DUNE: Pre-Construction Phase
沙丘:施工前阶段
  • 批准号:
    ST/R000050/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
UCL Experimental Particle Physics Consolidated Grant (2015-2019)
伦敦大学学院实验粒子物理综合资助(2015-2019)
  • 批准号:
    ST/N000285/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
LBNE and the Fermilab Liquid Argon Detector Programme
LBNE 和费米实验室液氩探测器计划
  • 批准号:
    ST/M002896/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
MINOS/MINOS+ PROJECT COORDINATION
MINOS/MINOS 项目协调
  • 批准号:
    MINOS/MINOS+
  • 财政年份:
    2010
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Intramural

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

CCR5 determinants for the HIV transmitted founder phenotype
HIV 传播创始人表型的 CCR5 决定因素
  • 批准号:
    10760884
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
  • 批准号:
    10570189
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
Next-Generation Tomosynthesis Pilot Study
下一代断层合成试点研究
  • 批准号:
    10685548
  • 财政年份:
    2022
  • 资助金额:
    $ 35.84万
  • 项目类别:
Ultra-sensitive Singlet Oxygen Dosimeter for Skin Cancer Treatment and Prevention
用于皮肤癌治疗和预防的超灵敏单线态氧剂量计
  • 批准号:
    10438940
  • 财政年份:
    2021
  • 资助金额:
    $ 35.84万
  • 项目类别:
High Energy and Spatial Resolution Multi-Isotope SPECT Imaging of Targeted Alpha-Emitters and their Daughters
目标α发射体及其子体的高能量和空间分辨率多同位素 SPECT 成像
  • 批准号:
    10703387
  • 财政年份:
    2021
  • 资助金额:
    $ 35.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了