Detection of ultra high energy cosmic ray neutrinos with ANITA and investigation of future large-scale detectors

ANITA 探测超高能宇宙线中微子及未来大型探测器研究

基本信息

  • 批准号:
    PP/E006876/1
  • 负责人:
  • 金额:
    $ 35.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Neutrinos are the second most abundant fundamental particle in the universe. They are produced by the sun as a by-product of the nuclear reactions powering the sun and on earth from radioactive decays. They are also produced in the upper atmosphere from the decays of the unstable particles that are produced by cosmic ray interactions. Neutrinos can thus tell us something about cosmic rays which in general we do not have a very complete understanding of. Cosmic rays are the particles produced amongst other things by exploding stars and are probably mostly protons but may also be heavier nuclei - we don't know yet and understanding their composition and energy can give us an insight into the nature of different star and galaxy types. Detecting neutrinos tells us about the nature of the universe and detecting the most energetic neutrinos tells us something about the most violent (and generally rarest) events in the universe. Neutrinos carry no charge, are almost massles and so only interact very weakly with their surroundings - indeed if the space between the earth and the sun was filled with lead, the neutrinos from the sun would still get to the earth - you would need a million times that distance of lead to stop the neutrinos ! Neutrinos can therefore travel from the very edges of the universe and thus from the earliest times and still reach the earth. Other particles cannot do this since they tend to get bent away by the magnetic fields of stars or planets or absorbed by the electromagnetic radiation that pervades the universe. This electromagnetic radiation is a remnant of the big bang and responsible for 1% of the interference you get on your analog TV picture and its precise measurement was just awarded the 2006 Nobel Prize in physics. Neutrinos can provide information that other particles cannot. Higher energy neutrinos tend to get absorbed easier than lower energy neutrinos and so we should not see extremely high energy neutrinos from very distant sources. If we see very high energy neutrinos (above the so-called GZK cut-off) then they are being produced locally (close to our own galaxy) by a mechanism that involves new physics - either a new exotic way of accelerating a particle quickly or from the decay of a new fundamental particle that is yet to be detected. The theories that seek to describe the large scale nature of the universe and the quantum workings inside the atom are termed grand unified theories and they tend to predict the existence of new heavy, unstable particles. These unstable particles can produce neutrinos when they decay, so the observation of ultra high energy neutrinos may signal new physics from a grand unified theory or a new astro-physical acceleration mechanism. This proposal is seeking to measure these ultra high energy neutrinos for the first time using the radio signal (not quite radio-1) produced as they traverse through the ice of Antartica. We are hoping to detect this signal using a NASA balloon equipped wirth radio antenna that will hover above the Antartica for a month at the end of 2006 and then again at the end of 2008. We are also seeking to design a new large scale detctor that will sit on Antartica's Ross Ice Shelf that willl be a permanent neutrino detector that will hopefully reveal the existence of new particles or some exotic secret from the distant universe.
中微子是宇宙中第二丰富的基本粒子。它们是由太阳产生的,是为太阳提供动力的核反应的副产品,也是地球上放射性衰变的产物。它们也是在高层大气中由宇宙射线相互作用产生的不稳定粒子的衰变产生的。因此,中微子可以告诉我们一些关于宇宙射线的信息,而这些信息通常我们还没有非常完整的了解。宇宙射线是恒星爆炸产生的粒子,可能主要是质子,但也可能是更重的原子核-我们还不知道,了解它们的组成和能量可以让我们深入了解不同星星和星系类型的性质。探测到中微子可以告诉我们宇宙的本质,而探测到能量最高的中微子可以告诉我们宇宙中最剧烈(通常也是最罕见)的事件。中微子不带电荷,几乎是质量,所以只与周围环境发生非常微弱的相互作用--事实上,如果地球和太阳之间的空间充满了铅,来自太阳的中微子仍然会到达地球--你需要一百万倍的铅距离才能阻止中微子!因此,中微子可以从宇宙的最边缘旅行,因此从最早的时候开始,仍然可以到达地球。其他粒子不能做到这一点,因为它们往往会被恒星或行星的磁场弯曲,或者被遍布宇宙的电磁辐射吸收。这种电磁辐射是大爆炸的残余,对你在模拟电视画面上得到的干扰有1%的责任,它的精确测量刚刚获得2006年诺贝尔物理学奖。中微子可以提供其他粒子无法提供的信息。高能中微子比低能中微子更容易被吸收,因此我们不应该看到来自非常遥远的来源的极高能量中微子。如果我们看到非常高能量的中微子(在所谓的GZK截止值以上),那么它们是通过一种涉及新物理学的机制在本地(靠近我们自己的星系)产生的-要么是一种快速加速粒子的新的奇异方式,要么是一种尚未被检测到的新基本粒子的衰变。试图描述宇宙的大尺度性质和原子内部量子工作的理论被称为大统一理论,它们倾向于预测新的重的不稳定粒子的存在。这些不稳定的粒子在衰变时可以产生中微子,因此对超高能中微子的观测可能标志着大统一理论或新的天体物理加速机制的新物理学。这项提议试图首次使用无线电信号(不完全是无线电-1)测量这些超高能中微子,因为它们穿过南极洲的冰。我们希望利用美国宇航局的一个气球探测到这个信号,该气球装备了第12个无线电天线,将在2006年底在南极洲上空盘旋一个月,然后在2008年底再次盘旋。我们还在寻求设计一个新的大型探测器,它将坐落在南极洲的罗斯冰架上,这将是一个永久性的中微子探测器,有望揭示新粒子的存在或来自遥远宇宙的一些奇异秘密。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array
对阿斯卡扬射电阵列原型站的超高能中微子通量的首次限制
  • DOI:
    10.1016/j.astropartphys.2015.04.006
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Measurement of the real dielectric permittivity ? of glacial ice
测量真实介电常数 ?
  • DOI:
    10.1016/j.astropartphys.2019.01.004
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole
南极 Askaryan 射电阵列原型 EeV 中微子探测器的设计和初始性能
  • DOI:
    10.1016/j.astropartphys.2011.11.010
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Allison P
  • 通讯作者:
    Allison P
Measurements of radio propagation in rock salt for the detection of high-energy neutrinos
测量岩盐中的无线电传播以探测高能中微子
Design and performance of an interferometric trigger array for radio detection of high-energy neutrinos
用于高能中微子无线电探测的干涉触发阵列的设计和性能
  • DOI:
    10.1016/j.nima.2019.01.067
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison, P.;Archambault, S.;Bard, R.;Beatty, J.J.;Beheler-Amass, M.;Besson, D.Z.;Beydler, M.;Bogdan, M.;Chen, C.-C.;Chen, C.-H.
  • 通讯作者:
    Chen, C.-H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Nichol其他文献

Ryan Nichol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Nichol', 18)}}的其他基金

DUNE Construction Grant
沙丘建设补助金
  • 批准号:
    ST/S003746/1
  • 财政年份:
    2019
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
DUNE: Pre-Construction Phase
沙丘:施工前阶段
  • 批准号:
    ST/R000050/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
UCL Experimental Particle Physics Consolidated Grant (2015-2019)
伦敦大学学院实验粒子物理综合资助(2015-2019)
  • 批准号:
    ST/N000285/1
  • 财政年份:
    2015
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
LBNE and the Fermilab Liquid Argon Detector Programme
LBNE 和费米实验室液氩探测器计划
  • 批准号:
    ST/M002896/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Research Grant
MINOS/MINOS+ PROJECT COORDINATION
MINOS/MINOS 项目协调
  • 批准号:
    MINOS/MINOS+
  • 财政年份:
    2010
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Intramural

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Continuing Grant
FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
  • 批准号:
    2329111
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Continuing Grant
SBIR Phase II: Rechargeable Carbon-Oxygen Battery for Ultra-Low-Cost Renewable Energy Storage
SBIR第二阶段:用于超低成本可再生能源存储的可充电碳氧电池
  • 批准号:
    2222588
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Cooperative Agreement
Development of Si-based phase change materials at ultra-high temperature for high-efficiency thermal energy storage systems
开发用于高效热能存储系统的超高温硅基相变材料
  • 批准号:
    23KJ0032
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unraveling Ultra-High-Energy Cosmic Ray Accelerators by De-excited Gamma-ray
通过去激发伽马射线解开超高能宇宙射线加速器
  • 批准号:
    23KJ1222
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An ultra-high efficiency Solar Energy solution for Sustainable Manufacturing
用于可持续制造的超高效率太阳能解决方案
  • 批准号:
    10073976
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Grant for R&D
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
  • 批准号:
    10679903
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
CCR5 determinants for the HIV transmitted founder phenotype
HIV 传播创始人表型的 CCR5 决定因素
  • 批准号:
    10760884
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
Mitochondrial Fidelity in Mammalian Neurons
哺乳动物神经元的线粒体保真度
  • 批准号:
    10592168
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
WoU-MMA: Pinning the Generation of Ultra-High-Energy Cosmic Rays with First Principles Plasma Simulations
WoU-MMA:利用第一原理等离子体模拟来固定超高能宇宙射线的产生
  • 批准号:
    2308944
  • 财政年份:
    2023
  • 资助金额:
    $ 35.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了