Using GWAS Data for Enhanced Mendelian Randomization Studies

使用 GWAS 数据进行增强孟德尔随机化研究

基本信息

  • 批准号:
    8037244
  • 负责人:
  • 金额:
    $ 149.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2013-09-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal addresses the difficulty of using observational data to drawing causal inferences on treatment effects. Methodological advances in this area have enormous implications for efforts to identify the most promising leverage points for interventions and thereby optimize clinical advice regarding a range of interventions or treatments affecting behavioral, biomarker, or psychosocial risk factors. Our proposal develops prior work on Mendelian Randomization (MR) designs, which are a special case of instrumental variables that use genetic variants as instruments. We extend and strengthen MR applications by taking advantage of data already collected in the context of Genome Wide Association Studies (GWAS). Embedding MR studies in GWAS data will result in more powerful studies and better assessments of the validity of those studies, leading to more credible MR effect estimates. We propose capitalizing on the GWAS data to allow four important innovations in MR studies. First, GWAS allows comprehensive characterization of background genetic characteristics to control for possible bias due to population stratification. Second, information on multiple candidate genetic instruments can be used to create multi-gene risk scores. These will provide far stronger instruments than single genes alone, improving both the statistical power and the opportunities to critically evaluate the assumptions for a valid MR study. Third, we can take advantage of the multiple instruments to conduct over-identification tests for the validity of each instrument. Over-identification tests are a standard econometric tool for evaluating instrumental variables but they have to date not been applied in MR studies. Finally, we demonstrate a novel approach to evaluating the assumptions of MR using gene- environment and gene-gene interactions. We use as an example current research on the effects of psychosocial phenotypes (symptoms of depression and anxiety and social integration) on diabetes and coronary heart disease. Psychosocial effects on both diseases are well-supported in observational studies, but previous randomized trials intervening on psychosocial risk factors had disappointing results. Thus, this is an ideal area in which to implement new approaches to analyzing observational data. Our analyses are based on previously collected GWAS data in two cohorts, the Nurses' Health Study and the Health Professionals Follow-up Study. We have identified a number of candidate genes likely to influence each of the psychosocial phenotypes and we will also take advantage of GWAS studies for the phenotypes of interest to calculate multi- gene or polygenic risk scores to use as instruments in MR studies. MR can be an extremely powerful tool to estimate causal effects, and applications of this approach have increased very rapidly. However, MR rests on strong assumptions that are rarely critically tested; in part this is because tools to evaluate these assumptions have not been available. Our work is intended to address this gap and foster judicious applications of MR to provide credible effect estimates in observational data. PUBLIC HEALTH RELEVANCE: Mendelian Randomization is a method that may offer new opportunities to derive credible effect estimates from observational data. This method uses genotypes that influence exposure to a particular biomarker, behavior, or other type of risk factor. Variations in this genotype may provide natural experiments to estimate the effect of the risk factor on subsequent health outcomes. We use new tools to make this study design stronger and to evaluate whether the effect estimates from this design are unbiased. Our methods take advantage of large investments already made by many epidemiologic samples in collecting data for genome wide association studies. To illustrate the methods, we focus on estimating the effects of psychosocial distress and social integration on coronary heart disease and diabetes.
描述(由申请方提供):本提案解决了使用观察数据对治疗效果进行因果推断的困难。这一领域的方法学进展对确定最有希望的干预杠杆点的努力产生了巨大的影响,从而优化了有关影响行为,生物标志物或心理社会风险因素的一系列干预或治疗的临床建议。我们的建议发展了孟德尔随机化(MR)设计的先前工作,这是使用遗传变异作为工具的工具变量的特殊情况。我们通过利用全基因组关联研究(GWAS)已经收集的数据来扩展和加强MR应用。在GWAS数据中嵌入MR研究将导致更强大的研究和对这些研究有效性的更好评估,从而导致更可信的MR效应估计。我们建议利用GWAS数据,在MR研究中进行四项重要创新。首先,GWAS允许对背景遗传特征进行全面表征,以控制由于群体分层而导致的可能偏倚。第二,关于多个候选遗传工具的信息可用于创建多基因风险评分。这些将提供比单基因更强大的工具,提高统计能力和机会,以批判性地评估有效MR研究的假设。第三,我们可以利用多个工具,对每个工具的有效性进行过度识别测试。过度识别测试是一个标准的计量经济学工具,用于评估工具变量,但他们迄今尚未被应用于MR研究。最后,我们展示了一种新的方法来评估假设MR使用基因-环境和基因-基因相互作用。我们使用当前关于心理社会表型(抑郁和焦虑症状以及社会融合)对糖尿病和冠心病影响的研究作为例子。心理社会对这两种疾病的影响在观察性研究中得到了很好的支持,但以前对心理社会风险因素进行干预的随机试验结果令人失望。因此,这是一个理想的领域,在其中实施新的方法来分析观测数据。我们的分析是基于先前收集的两个队列的GWAS数据,护士健康研究和卫生专业人员随访研究。我们已经确定了许多可能影响每种心理社会表型的候选基因,我们还将利用GWAS研究的优势来计算多基因或多基因风险评分,以用作MR研究中的工具。MR可以是一个非常强大的工具来估计因果关系的影响,这种方法的应用已经非常迅速地增加。然而,MR依赖于很少经过严格检验的强有力的假设;部分原因是评估这些假设的工具还没有。我们的工作旨在解决这一差距,并促进明智的应用MR提供可靠的效果估计的观测数据。 公共卫生关系:孟德尔随机化是一种方法,可以提供新的机会,从观察数据中获得可信的效果估计。该方法使用影响暴露于特定生物标志物、行为或其他类型的风险因素的基因型。这种基因型的变异可能提供自然实验来估计风险因素对随后健康结果的影响。我们使用新的工具来加强这项研究设计,并评估这项设计的效应估计值是否无偏。我们的方法利用了许多流行病学样本在收集全基因组关联研究数据方面已经进行的大量投资。为了说明这些方法,我们着重于估计心理社会困扰和社会融合对冠心病和糖尿病的影响。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance of polygenic scores for predicting phobic anxiety.
  • DOI:
    10.1371/journal.pone.0080326
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Walter S;Glymour MM;Koenen K;Liang L;Tchetgen Tchetgen EJ;Cornelis M;Chang SC;Rimm E;Kawachi I;Kubzansky LD
  • 通讯作者:
    Kubzansky LD
Genome-wide polygenic scoring for a 14-year long-term average depression phenotype.
  • DOI:
    10.1002/brb3.205
  • 发表时间:
    2014-03
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chang, Shun-Chiao;Glymour, M. Maria;Walter, Stefan;Liang, Liming;Koenen, Karestan C.;Tchetgen, Eric J.;Cornelis, Marilyn C.;Kawachi, Ichiro;Rimm, Eric;Kubzansky, Laura D.
  • 通讯作者:
    Kubzansky, Laura D.
Are genetic variations in OXTR, AVPR1A, and CD38 genes important to social integration? Results from two large U.S. cohorts.
  • DOI:
    10.1016/j.psyneuen.2013.09.024
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chang, Shun-Chiao;Glymour, M. Maria;Rewak, Marissa;Cornelis, Marilyn C.;Walter, Stefan;Koenen, Karestan C.;Kawachi, Ichiro;Liang, Liming;Tchetgen, Eric J. Tchetgen;Kubzansky, Laura D.
  • 通讯作者:
    Kubzansky, Laura D.
Commentary: building an evidence base for mendelian randomization studies: assessing the validity and strength of proposed genetic instrumental variables.
评论:为孟德尔随机化研究建立证据基础:评估所提出的遗传工具变量的有效性和强度。
  • DOI:
    10.1093/ije/dyt023
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    TchetgenTchetgen,EricJ;Walter,Stefan;Glymour,MMaria
  • 通讯作者:
    Glymour,MMaria
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LAURA D KUBZANSKY其他文献

LAURA D KUBZANSKY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LAURA D KUBZANSKY', 18)}}的其他基金

The Biology of Resilience: Oxytocin, Social Relationships and Health
复原力的生物学:催产素、社会关系和健康
  • 批准号:
    7758708
  • 财政年份:
    2009
  • 资助金额:
    $ 149.48万
  • 项目类别:
Core - Survey and Measurement
核心 - 测量与测量
  • 批准号:
    7596659
  • 财政年份:
  • 资助金额:
    $ 149.48万
  • 项目类别:
Core - Survey and Measurement
核心 - 测量与测量
  • 批准号:
    8038429
  • 财政年份:
  • 资助金额:
    $ 149.48万
  • 项目类别:
Core - Survey and Measurement
核心 - 测量与测量
  • 批准号:
    7726472
  • 财政年份:
  • 资助金额:
    $ 149.48万
  • 项目类别:
Core - Survey and Measurement
核心 - 测量与测量
  • 批准号:
    7746383
  • 财政年份:
  • 资助金额:
    $ 149.48万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 149.48万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了