Advancing Instrumental Variable Methods in Comparative Effectiveness Research
推进比较有效性研究中的工具变量方法
基本信息
- 批准号:8036881
- 负责人:
- 金额:$ 1.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-28 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectArtsCardiovascular DiseasesCharacteristicsClinicalCodeComputer softwareDataData AnalysesDatabasesEvaluationExclusionGoalsHealthHealthcareHeterogeneityInferiorLeast-Squares AnalysisLiteratureMalignant NeoplasmsMalignant neoplasm of prostateMedicalMethodsModalityObservational StudyOutcomePatientsPhysiciansPoliciesPolicy AnalysisProceduresProstateRegression AnalysisResearchResearch PersonnelResidual stateRisk FactorsScienceScoring MethodSelection BiasSourceStagingStatistical MethodsTechniquesTestingTranslationsTreatment outcomeVariantWorkabstractingalternative treatmentbasecomparativecomparative effectivenesscomputer codeeffectiveness researchgeographic differenceimprovedinstrumentnovelresearch studysimulationtechnique developmenttreatment effect
项目摘要
DESCRIPTION (provided by applicant): Comparative effectiveness research (CER) primarily involves estimation of causal effects of alternative treatments on outcomes. To this end, observational databases are a promising source of information on patient-level treatments and outcomes. However, observational data analyses are prone to selection biases or confounding by indication, which arise due to the differences in levels of observed and unobserved risk factors across patients receiving different treatments, and which complicate inference on causal effects of treatments. Instrumental variable (IV) methods are one of the most powerful methods that can address these challenges and help estimate causal effects from such data, yet these methods are underutilized for CER. The goal of this application is to increase the appropriate utilization of instrumental variables methods by overcoming three important barriers to adoption of these powerful methods for CER. Appropriate use of IV methods for CER hinges on selecting good instruments and appropriate estimation. A good instrument must 1) induce substantial variation in treatment choices (i.e. be "strong") but 2) not affect outcomes except through treatment choices (i.e. the "exclusion restriction"). While the consequences of using weak instruments have been investigated, the consequences of violating the exclusion restriction are not well understood. Even under the traditional assumption of a homogenous treatment effect, several new IV approaches are being developed. Knowing which method is appropriate for any particular application remains challenging. The default has been to use two-stage least squares, but many situations common to CER require alternative approaches such as near-far matching or two-stage residual inclusion. This application aims to address these challenges with applying instrumental variables analysis with a goal of providing applied practitioners of CER with appropriate guidance. Results of IV analyses may be generalized to the wrong subpopulations if treatment effects are heterogeneous as these effects become dependent on the analyst's choice of IV(s) and are difficult to interpret for clinical and policy purposes. We will also develop novel IV approaches that address treatment effect heterogeneity and generate interpretable results for CER. Many current applications of CER do not take full advantage of recent IV methodological advances, due to unavailability of readily implementable software or statistical code, resulting in delays in the translation of the science of IV analysis to practice. Therefore, we will develop relevant statistical code to help practitioners implement these methods using common statistical software packages and illustrate the methods through empirical examples in prostate cancer and cardiovascular disease.
PUBLIC HEALTH RELEVANCE: Comparative effectiveness research (CER) primarily involves estimation of causal effects of alternative treatments on outcomes. To this end, observational databases are a promising source of information on patient-level treatments and outcomes. However, observational data analyses are prone to selection biases or confounding by indication, which arise due to the differences in levels of observed and unobserved risk factors across patients receiving different treatments, and which complicate inference on causal effects of treatments. Instrumental variable (IV) methods are one of the most powerful methods that can address these challenges and help estimate causal effects from such data, yet these methods are underutilized for CER. The goal of this application is to increase the appropriate utilization of IV methods by overcoming three important barriers to adoption of these powerful methods for CER.
描述(由申请人提供):比较有效性研究(CER)主要涉及评估替代治疗对结果的因果影响。为此,观察性数据库是一个很有希望的关于患者治疗和结果的信息来源。然而,观察性数据分析容易出现选择偏倚或指征混淆,这是由于在接受不同治疗的患者中观察到的和未观察到的危险因素的水平存在差异,这使得对治疗因果效应的推断复杂化。工具变量(IV)方法是最有效的方法之一,可以解决这些挑战,并帮助估计这些数据的因果关系,但这些方法在CER中未得到充分利用。本应用程序的目标是通过克服采用这些强大的CER方法的三个重要障碍,增加工具变量方法的适当利用。适当使用IV方法进行CER取决于选择好的仪器和适当的估计。一个好的工具必须1)在治疗选择中引起实质性的变化(即“强”),但2)除非通过治疗选择(即“排除限制”),否则不会影响结果。虽然已经研究了使用弱仪器的后果,但违反排除限制的后果尚不清楚。即使在传统的均质治疗效果假设下,也正在开发几种新的静脉注射方法。了解哪种方法适合于任何特定的应用程序仍然具有挑战性。默认情况是使用两阶段最小二乘,但CER常见的许多情况需要替代方法,例如近距离匹配或两阶段残差包含。本应用程序旨在通过应用工具变量分析来解决这些挑战,目的是为CER的应用从业者提供适当的指导。如果治疗效果是异质的,静脉注射分析的结果可能被推广到错误的亚群,因为这些效果依赖于分析者对静脉注射的选择,并且难以为临床和政策目的解释。我们还将开发新的静脉注射方法,以解决治疗效果的异质性,并产生可解释的CER结果。由于缺乏易于实现的软件或统计代码,许多当前的CER应用并没有充分利用最近IV方法的进步,导致IV分析科学转化为实践的延迟。因此,我们将开发相关的统计代码,帮助从业者使用常用的统计软件包来实现这些方法,并通过前列腺癌和心血管疾病的实证例子来说明这些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANIRBAN BASU其他文献
ANIRBAN BASU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANIRBAN BASU', 18)}}的其他基金
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:
9768968 - 财政年份:2017
- 资助金额:
$ 1.95万 - 项目类别:
Value of Information Methods for NHLBI Trials
NHLBI 试验的信息方法的价值
- 批准号:
9050702 - 财政年份:2015
- 资助金额:
$ 1.95万 - 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:
8709046 - 财政年份:2014
- 资助金额:
$ 1.95万 - 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:
9023509 - 财政年份:2014
- 资助金额:
$ 1.95万 - 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:
8231253 - 财政年份:2012
- 资助金额:
$ 1.95万 - 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
- 批准号:
8446920 - 财政年份:2012
- 资助金额:
$ 1.95万 - 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:
8028216 - 财政年份:2011
- 资助金额:
$ 1.95万 - 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:
8444529 - 财政年份:2011
- 资助金额:
$ 1.95万 - 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
- 批准号:
8305510 - 财政年份:2011
- 资助金额:
$ 1.95万 - 项目类别:
A Comprehensive Probabilistic-Micro-Simulation Model to Assess Cost-Effectiveness
用于评估成本效益的综合概率微观模拟模型
- 批准号:
8035726 - 财政年份:2010
- 资助金额:
$ 1.95万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 1.95万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Standard Grant














{{item.name}}会员




