A Comprehensive Probabilistic-Micro-Simulation Model to Assess Cost-Effectiveness

用于评估成本效益的综合概率微观模拟模型

基本信息

  • 批准号:
    8035726
  • 负责人:
  • 金额:
    $ 19.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Schizophrenia affects about 1.3% of the population and yet is responsible for US$28 billion in annual health care costs. The burden of schizophrenia to the patients, their family members and to the society is large. Antipsychotic drugs are the first line of treatment of schizophrenia and have helped some patients with this disease to lead productive and fulfilling lives. With the advent of the second-generation of antipsychotic drugs, which are typically much more expensive than first generation antipsychotics, the growth in medical expenditures among these patients have risen steadily, calling into question the marginal value of the newer second-generation antipsychotic drugs (atypicals) over the older generation neuroleptics. There is also ambiguous evidence on whether pharmaceutical expenditures can offset the expensive inpatient care for these patients. Consequently, controversies are growing regarding the use of these newer and more expensive drugs, especially when some of them have recently documented evidence of increasing cardiovascular risks in this already vulnerable population. This debate is further fueled by the recently published results from the NIMH funded CATIE study that reported equivalence of continuation rates between patient randomized to receiving first-generation versus atypical antipsychotic drugs. In the presence of such controversy, there remain crucial questions to be answered. These questions span a variety of policies, both present and future, influence a wide range of stake-holders, and primarily focus on the comparative effectiveness, costs and cost-effectiveness of the atypicals versus the neuroleptics. They can only be answered with careful research on evaluating treatment options in schizophrenia and identifying research priorities in this field. This proposal attempts to address these questions using innovative methods in economics, statistics and decision sciences. In this work, we propose to develop and apply a comprehensive probabilistic micro-simulation model in schizophrenia to provide information about population level costs, effectiveness and cost-effectiveness of pharmacological treatments and treatment algorithms. The work proposed here is important methodologically and clinically. The methodological advancements that are proposed will have major applications for technology assessment in many domains in health care and hope to provide valuable insights for their potential application in many other contexts. Clinically, our findings have the potential to have important implications for the treatment of schizophrenia by providing physicians and their patients with rich information on the distribution of outcomes of treatments that can help guide them in making more informed treatment choices. Furthermore, the proposed value of information analyses will direct future research and resources in this field by identifying research priorities on those parameters where more precise estimates would be most valuable. Controversies are growing regarding the use of second generation versus the first generation antipsychotics by patients with schizophrenia in the face of rising costs and ambiguous evidence on the benefits of the newer drugs. Frequent switching between alternative drugs indicates that no one drug may be optimal for a patient. Enormous uncertainties in current estimates of treatment effect imply that the value of future research in this filed may be substantial. In order to address these questions, the proposed work aims to develop a comprehensive micro-simulation model to assess the costs, effectiveness, cost-effectiveness of alternative pharmacological treatment algorithms in schizophrenia and to conduct value of information and value of future research analyses in this field.
描述(由申请人提供):精神分裂症影响约 1.3% 的人口,但每年造成 280 亿美元的医疗保健费用。精神分裂症给患者、家属和社会带来很大的负担。抗精神病药物是治疗精神分裂症的一线药物,并帮助一些患有这种疾病的患者过上了富有成效和充实的生活。随着第二代抗精神病药物(通常比第一代抗精神病药物昂贵得多)的出现,这些患者的医疗支出稳步上升,这使人们对新型第二代抗精神病药物(非典型药物)相对于老一代抗精神病药物的边际价值产生了质疑。关于药品支出是否可以抵消这些患者昂贵的住院治疗费用,也存在不明确的证据。因此,关于使用这些更新且更昂贵的药物的争议越来越大,特别是当其中一些药物最近有证据表明在这个已经很脆弱的人群中心血管风险增加时。 NIMH 资助的 CATIE 研究最近发表的结果进一步加剧了这场争论,该研究报告了随机接受第一代抗精神病药物与非典型抗精神病药物的患者之间的持续率相当。在存在这样的争议的情况下,仍然有一些关键问题需要回答。这些问题涉及当前和未来的各种政策,影响广泛的利益相关者,并且主要集中在非典型药物与抗精神病药物的相对有效性、成本和成本效益上。只有通过仔细研究评估精神分裂症的治疗方案并确定该领域的研究重点,才能回答这些问题。该提案试图利用经济学、统计学和决策科学的创新方法来解决这些问题。在这项工作中,我们建议开发和应用精神分裂症的综合概率微观模拟模型,以提供有关药物治疗和治疗算法的人口水平成本、有效性和成本效益的信息。这里提出的工作在方法论和临床上都很重要。所提出的方法论进步将在医疗保健许多领域的技术评估中具有重要应用,并希望为其在许多其他情况下的潜在应用提供有价值的见解。在临床上,我们的研究结果有可能对精神分裂症的治疗产生重要影响,为医生及其患者提供有关治疗结果分布的丰富信息,帮助指导他们做出更明智的治疗选择。此外,信息分析的拟议价值将通过确定这些参数的研究重点来指导该领域的未来研究和资源,其中更精确的估计将是最有价值的。面对成本上升以及新药益处的证据不明确,关于精神分裂症患者使用第二代抗精神病药与第一代抗精神病药的争议越来越大。替代药物之间的频繁切换表明没有一种药物可能最适合患者。目前对治疗效果的估计存在巨大的不确定性,这意味着该领域未来研究的价值可能很大。为了解决这些问题,本文的工作旨在开发一个全面的微观模拟模型,以评估精神分裂症替代药物治疗算法的成本、有效性和成本效益,并进行该领域的信息价值和未来研究分析的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANIRBAN BASU其他文献

ANIRBAN BASU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANIRBAN BASU', 18)}}的其他基金

Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
  • 批准号:
    9768968
  • 财政年份:
    2017
  • 资助金额:
    $ 19.44万
  • 项目类别:
Value of Information Methods for NHLBI Trials
NHLBI 试验的信息方法的价值
  • 批准号:
    9050702
  • 财政年份:
    2015
  • 资助金额:
    $ 19.44万
  • 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
  • 批准号:
    8709046
  • 财政年份:
    2014
  • 资助金额:
    $ 19.44万
  • 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
  • 批准号:
    9023509
  • 财政年份:
    2014
  • 资助金额:
    $ 19.44万
  • 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
  • 批准号:
    8231253
  • 财政年份:
    2012
  • 资助金额:
    $ 19.44万
  • 项目类别:
Empowering the Annual Health Econometrics Workshop
赋能年度健康计量经济学研讨会
  • 批准号:
    8446920
  • 财政年份:
    2012
  • 资助金额:
    $ 19.44万
  • 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8028216
  • 财政年份:
    2011
  • 资助金额:
    $ 19.44万
  • 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8444529
  • 财政年份:
    2011
  • 资助金额:
    $ 19.44万
  • 项目类别:
Instrumental Variable Methods for Censored Cost Data and an Application in Prosta
用于审查成本数据的工具变量方法及其在 Prosta 中的应用
  • 批准号:
    8305510
  • 财政年份:
    2011
  • 资助金额:
    $ 19.44万
  • 项目类别:
Advancing Instrumental Variable Methods in Comparative Effectiveness Research
推进比较有效性研究中的工具变量方法
  • 批准号:
    8036881
  • 财政年份:
    2010
  • 资助金额:
    $ 19.44万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了