Illumina Sequencer to Facilitate Functional Genomics at Berkeley
Illumina 测序仪促进伯克利功能基因组学的发展
基本信息
- 批准号:7795092
- 负责人:
- 金额:$ 49.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAllelesAlternative SplicingAnimalsBacteriaBase SequenceBindingBiological ModelsBiologyCaliforniaCatalogingCatalogsCommunitiesComplexComputer softwareDNADNA Microarray ChipDNA SequenceDNA-Binding ProteinsData AnalysesData QualityEpigenetic ProcessExperimental DesignsFacultyFrequenciesFundingGenerationsGenomeGenomicsGenotypeHuman Cell LineIn VitroIndividualLaboratoriesLengthLocationMapsMeasuresMessenger RNAMethodsModelingMusNucleic AcidsPreparationProcessProteinsProtocols documentationRNA BindingRNA-Binding ProteinsReadingResearchResearch PersonnelRunningSamplingTechniquesTechnologyTimeTissuesTrainingUniversitiesabstractingbasecostdistributed datafunctional genomicsgenome-widehigh throughput analysishuman stem cellsinnovationmutantplant fungiresearch studytranscription factor
项目摘要
DESCRIPTION (provided by applicant):
6. Project Summary/Abstract. Second generation DNA sequencing machines capable of generating tens to hundreds of million sequence reads in a single run at a modest cost have transformed functional genomics. It is now simpler, more accurate and in many cases less expensive to analyze the composition of complex nucleic acid mixtures directly, by sequencing, than indirectly by hybridization to a DNA microarray, as had been the norm for the last decade. High-throughput sequencing has also enabled new functional genomic experiments that could not be efficiently carried out with microarrays. The Vincent J. Coates Genomic Sequencing Laboratory at the University of California, Berkeley has catalyzed this shift by providing Berkeley faculty with access to next-gen sequencing, along with training and assistance in experimental design, sample preparation and data analysis. The center's two Illumina Genome Analyzers have been in constant use since they came online (one 15 months ago, a second 9 months ago). During that time, 23 NIH-funded (and 27 total) laboratories have used these machines to carry out a wide variety of functional genomic experiments, including: quantifying mRNA abundance, measuring mRNA synthesis and decay rates, identifying alternative splice forms and the frequency of their utilization, comparing the expression of different alleles, mapping the locations of regions bound by transcription factors and other DNA interacting proteins, determining the genome-wide distribution of epigenetic marks, cataloging the RNAs bound by RNA binding proteins, pinpointing mutants and genotyping individuals from large crosses. Analyzed samples have come from multiple species of bacteria, protists, plants, fungi and animals, including both model and non-model systems, mouse and human stem cells, and normal and diseased human cell-lines and tissues. In addition, Berkeley investigators have developed new sequencing-based techniques to characterize the in vitro affinity of DNA binding proteins to their targets, and to rationally evolve proteins to have desired functions. The center has been used to sequence several bacterial, fungal and animal genomes. Supporting this flurry of activity is a talented group of computational biologists at Berkeley developing innovative methods for base-calling, read mapping, assembly and analysis of this high-throughput sequencing data, and distributing and supporting software implementation of their methods that are actively used at Berkeley and elsewhere. With reasonably stable experimental protocols and analysis methods, the major factor limiting the wider utilization of this technology at Berkeley is sequencing capacity. Our two machines operate continuously and produce an average of 10 runs per month per machine (the length of a run depends on the desired read length and paired end status). Nonetheless, the queue of samples gets longer and longer, and there is currently a delay of nearly two months to have samples processed. We are requesting funds to purchase an additional Illumina Genome Analyzer IIx DNA sequencer to serve the demonstrated need of the Berkeley biology community. We have a fully operational facility, with an outstanding director, that has been producing high-quality data from Illumina sequencers for over a year. A new machine would be put to immediate use, and would have a significant positive impact on NIH-funded research in our community.
描述(由申请人提供):
6.项目概要/摘要。 第二代DNA测序仪能够以适度的成本在单次运行中产生数千万至数亿个序列读数,已经改变了功能基因组学。现在,通过测序直接分析复杂核酸混合物的组成比通过与DNA微阵列杂交间接分析复杂核酸混合物的组成更简单,更准确,并且在许多情况下更便宜,这在过去十年中一直是常态。高通量测序也使新的功能基因组实验,不能有效地进行微阵列。 加州大学伯克利分校的Vincent J.科茨基因组测序实验室通过为伯克利的教师提供下一代测序,沿着实验设计、样品制备和数据分析方面的培训和帮助,促进了这一转变。该中心的两台Illumina基因组分析仪自上线以来一直在使用(一台15个月前,另一台9个月前)。 在此期间,23个NIH资助的(总共27个)实验室已经使用这些机器进行了各种各样的功能基因组实验,包括:定量mRNA丰度,测量mRNA合成和衰减速率,鉴定可变剪接形式及其利用频率,比较不同等位基因的表达,绘制由转录因子和其他DNA相互作用蛋白结合的区域的位置,确定表观遗传标记的全基因组分布,对由RNA结合蛋白结合的RNA进行编目,精确定位突变体并对大型杂交的个体进行基因分型。分析的样品来自多种细菌、原生生物、植物、真菌和动物,包括模型和非模型系统、小鼠和人类干细胞以及正常和患病的人类细胞系和组织。此外,伯克利的研究人员开发了新的基于测序的技术,以表征DNA结合蛋白对其靶点的体外亲和力,并合理地进化蛋白质以具有所需的功能。该中心已被用于对几种细菌、真菌和动物的基因组进行测序。 支持这一系列活动的是伯克利的一群才华横溢的计算生物学家,他们开发了用于碱基调用、读段映射、组装和分析这种高通量测序数据的创新方法,并分发和支持伯克利和其他地方积极使用的方法的软件实现。 由于实验方案和分析方法相当稳定,限制伯克利分校更广泛利用这项技术的主要因素是测序能力。我们的两台机器连续运行,每台机器平均每月运行10次(运行时间取决于所需的读取长度和配对末端状态)。尽管如此,样品的排队时间越来越长,目前处理样品的时间已经延迟了近两个月。 我们正在申请资金购买一个额外的Illumina基因组分析仪IIx DNA测序仪,以满足伯克利生物学社区的需求。我们有一个全面运作的设施,有一个杰出的主任,已经从Illumina测序仪产生高质量的数据超过一年。一台新机器将立即投入使用,并将对我们社区的NIH资助的研究产生重大的积极影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN W. TAYLOR其他文献
JOHN W. TAYLOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN W. TAYLOR', 18)}}的其他基金
2010 Cell and Molecular Fungal Biology; Gordon Research Conference
2010 细胞与分子真菌生物学;
- 批准号:
7905513 - 财政年份:2010
- 资助金额:
$ 49.95万 - 项目类别:
"The development of genetics and genomics for analysis of quantitative traits"
“用于数量性状分析的遗传学和基因组学的发展”
- 批准号:
7508956 - 财政年份:2008
- 资助金额:
$ 49.95万 - 项目类别:
"The development of genetics and genomics for analysis of quantitative traits"
“用于数量性状分析的遗传学和基因组学的发展”
- 批准号:
7894574 - 财政年份:2008
- 资助金额:
$ 49.95万 - 项目类别:
"The development of genetics and genomics for analysis of quantitative traits"
“用于数量性状分析的遗传学和基因组学的发展”
- 批准号:
8109212 - 财政年份:2008
- 资助金额:
$ 49.95万 - 项目类别:
Coccidioidomycosis:Genome Comparison, Selection and Transcription.
球孢子菌病:基因组比较、选择和转录。
- 批准号:
7800260 - 财政年份:2007
- 资助金额:
$ 49.95万 - 项目类别:
Coccidioidomycosis:Genome Comparison, Selection and Transcription.
球孢子菌病:基因组比较、选择和转录。
- 批准号:
7264463 - 财政年份:2007
- 资助金额:
$ 49.95万 - 项目类别:
Coccidioidomycosis:Genome Comparison, Selection and Transcription.
球孢子菌病:基因组比较、选择和转录。
- 批准号:
7608670 - 财政年份:2007
- 资助金额:
$ 49.95万 - 项目类别:
Coccidioidomycosis:Genome Comparison, Selection and Transcription.
球孢子菌病:基因组比较、选择和转录。
- 批准号:
7417795 - 财政年份:2007
- 资助金额:
$ 49.95万 - 项目类别:
Coccidioidomycosis:Genome Comparison, Selection and Transcription.
球孢子菌病:基因组比较、选择和转录。
- 批准号:
8059647 - 财政年份:2007
- 资助金额:
$ 49.95万 - 项目类别:
COCCIDIOIDES IMMITIS EVOLUTION AND VACCINE PRODUCTION
球孢子菌的进化和疫苗生产
- 批准号:
6657471 - 财政年份:2002
- 资助金额:
$ 49.95万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 49.95万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 49.95万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 49.95万 - 项目类别: