Novel Interneurons Mediating Feedforward Inhibition
介导前馈抑制的新型中间神经元
基本信息
- 批准号:8066292
- 负责人:
- 金额:$ 31.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-01-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAction PotentialsAllatostatinAnimalsAreaAuditoryAutistic DisorderBehaviorBehavioralCellsCerebral cortexConsciousDendritesDistalEmployee StrikesEnvironmentEquilibriumEvolutionExcitatory Postsynaptic PotentialsExhibitsFeedbackFire - disastersFoundationsFrequenciesFutureGoalsGrantHumanIn VitroInterneuronsKainic Acid ReceptorsKineticsKnock-outKnockout MiceKnowledgeMediatingMethodsMinorityMolecularMouse StrainsMusN-Methyl-D-Aspartate ReceptorsNeuronsParticipantParvalbuminsPatternPerceptionPharmacogeneticsPlayPopulationPopulation HeterogeneityPresynaptic TerminalsProcessPropertyRoleSchizophreniaSensorySensory ProcessShapesSomatostatinStimulusSynapsesTestingThalamic structureTimeTimeLineTrainingTransgenic MiceTransgenic OrganismsVisualWakefulnessWorkawakebarrel cortexbasedesensitizationexcitatory neuronexperiencegamma-Aminobutyric Acidin vivoinhibitory neuroninnovationneglectneuronal cell bodyneuronal patterningnovelpublic health relevancereceptive fieldreceptorresearch studyresponsesomatosensoryspatiotemporalstellate cellsynaptic inhibition
项目摘要
DESCRIPTION (provided by applicant): All incoming auditory, visual and somatosensory information is relayed through the thalamus to the cerebral cortex, which, during wakefulness, is responsible for transforming these sensory inputs into a spatio-temporal pattern of neuronal activity that gives rise to an internal representation of the external world. These representations are a crucial component of our conscious experience. Understanding how incoming information from the thalamus gives rise to cortical activity is therefore essential for understanding both normal and pathological states of consciousness, such as schizophrenia or autism, when internal representations appear to go awry. Although they are only a minority of all cortical neurons, GABA-releasing inhibitory interneurons play a crucial role in these transformations. By providing both feedforward and feedback inhibition, inhibitory interneurons restrict electrical activity in the majority excitatory neurons to a precisely tuned response in time and in space. Therefore, understanding how sensory representations are generated requires a detailed knowledge of the identity and properties of the GABAergic neurons and synapses which mediate feedforward and feedback inhibition, and of their responses to incoming sensory information, but such knowledge is still lacking. The two largest and best studied inhibitory subtypes are "fast spiking" interneurons and somatostatin-containing interneurons. Previous studies suggested that feedforward inhibition is mediated exclusively by fast-spiking cells. In contrast, we showed in the previous grant period that both subtypes of interneurons mediate feedforward inhibition, but do so under very different stimulation regimes: fast- spiking interneurons will fire in response to a transient stimulus, while somatostatin- containing interneurons will fire in response to a sustained input. During the current grant period, we will use electrophysiological and pharmacological methods to elucidate the biophysical basis for these striking differences in response properties, and we will use novel genetically modified strains of mice to test the roles of each interneuron subtype in shaping responses of cortical neurons to incoming sensory information from the thalamus.
PUBLIC HEALTH RELEVANCE: All incoming sensory information is relayed through the thalamus to the cerebral cortex, which transforms these sensory inputs into a spatio-temporal pattern of neuronal activity that underlies our conscious experience. Understanding these thalamocortical transformations is therefore essential for understanding both normal and pathological states of consciousness, such as autism or schizophrenia, when internal representations appear to go awry. In this project we will study the crucial, but little-understood role played by specific subtypes of inhibitory neurons in shaping cortical responses to incoming information.
描述(申请人提供):所有传入的听觉、视觉和躯体感觉信息都通过丘脑传递到大脑皮层,在清醒时,大脑皮层负责将这些感觉输入转化为神经活动的时空模式,从而产生外部世界的内部表征。这些表征是我们有意识体验的重要组成部分。因此,了解丘脑传入的信息如何引起皮质活动,对于理解意识的正常和病理状态,如精神分裂症或自闭症,当内部表征似乎出现错误时,都是至关重要的。虽然它们只是所有皮质神经元中的一小部分,但GABA释放抑制中间神经元在这些转化中起着至关重要的作用。通过提供前馈和反馈抑制,抑制性中间神经元将大多数兴奋性神经元的电活动限制在时间和空间上的精确调谐反应。因此,要理解感觉表征是如何产生的,需要详细了解介导前馈和反馈抑制的GABA能神经元和突触的身份和特性,以及它们对传入感觉信息的反应,但这种知识仍然缺乏。两种最大、研究最深入的抑制亚型是“快速放电”中间神经元和含有生长抑素的中间神经元。以前的研究表明,前馈抑制完全是由快脉冲细胞介导的。相反,我们在之前的授权期显示,两种亚型的中间神经元都介导了前馈抑制,但在非常不同的刺激机制下做到了这一点:快速放电的中间神经元将对瞬时刺激做出反应,而含有生长抑素的中间神经元将对持续的输入做出反应。在目前的资助期间,我们将使用电生理和药理学方法来阐明这些显著反应特性差异的生物物理基础,并将使用新的转基因小鼠品系来测试每种中间神经元亚型在塑造皮质神经元对来自丘脑的传入感觉信息的反应中所起的作用。
与公共健康相关:所有传入的感觉信息都通过丘脑传递到大脑皮层,大脑皮层将这些感觉输入转换为神经活动的时空模式,这是我们意识体验的基础。因此,了解这些丘脑皮质的变化对于理解意识的正常和病理状态是至关重要的,例如自闭症或精神分裂症,当内部表现似乎出现错误时。在这个项目中,我们将研究特定类型的抑制性神经元在塑造对传入信息的皮质反应中所扮演的关键但鲜为人知的角色。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARIEL AGMON其他文献
ARIEL AGMON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARIEL AGMON', 18)}}的其他基金
Exploring the Neural Correlates of Object Percepts in the Head-Restrained Mouse
探索头部约束小鼠物体感知的神经相关性
- 批准号:
8970039 - 财政年份:2015
- 资助金额:
$ 31.41万 - 项目类别:
INTERNEURONS MEDIATING FEEDFORWARD THALAMOCORTICAL INHIBITION
中间神经元介导前向丘脑皮质抑制
- 批准号:
7719929 - 财政年份:2008
- 资助金额:
$ 31.41万 - 项目类别:
Novel Interneurons Mediating Feedforward Inhibition
介导前馈抑制的新型中间神经元
- 批准号:
8449725 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
NOVEL INTERNEURONS MEDIATING FEEDFORWARD THALAMOCORTICAL INHIBITION
介导前向丘脑皮质抑制的新型中间神经元
- 批准号:
7559668 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
INTERNEURONS MEDIATING FEEDFORWARD THALAMOCORTICAL INHIBITION
中间神经元介导前向丘脑皮质抑制
- 批准号:
7609752 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
Novel Interneurons Mediating Feedforward Inhibition
介导前馈抑制的新型中间神经元
- 批准号:
8254430 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
Novel Interneurons Mediating Feedforward Inhibition
介导前馈抑制的新型中间神经元
- 批准号:
8133196 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
NOVEL INTERNEURONS MEDIATING FEEDFORWARD THALAMOCORTICAL INHIBITION
介导前向丘脑皮质抑制的新型中间神经元
- 批准号:
7197012 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
Novel Interneurons Mediating Feedforward Inhibition
介导前馈抑制的新型中间神经元
- 批准号:
7986459 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
NOVEL INTERNEURONS MEDIATING FEEDFORWARD THALAMOCORTICAL INHIBITION
介导前向丘脑皮质抑制的新型中间神经元
- 批准号:
7340115 - 财政年份:2007
- 资助金额:
$ 31.41万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 31.41万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 31.41万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 31.41万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 31.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 31.41万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 31.41万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 31.41万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 31.41万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 31.41万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 31.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




