Intrinsic currents modulate synaptic integration in dopamine neurons

内在电流调节多巴胺神经元的突触整合

基本信息

  • 批准号:
    7996573
  • 负责人:
  • 金额:
    $ 34.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective is to characterize the contribution of the intrinsic properties of dopamine neurons to synaptic integration. Specifically, we will determine whether modulation of the ether-a-go-go-related gene (ERG) and/or the small conductance calcium-activated (SK) potassium channels alters their response to excitatory synaptic input. Bursts in dopamine neurons are thought to convey the reward prediction and salience signals. Schizophrenia is thought to result from disordered dopaminergic signaling. Antipsychotics attenuate the disordered dopaminergic signal, relieving psychosis, and usually partially block the K+ ERG current. The SK current masks background burst firing in dopamine neurons, and we propose the ERG K+ current as an additional, novel intrinsic component of burst firing. The specific hypotheses to be tested in this application are that: 1) the level of spontaneous bursting activity determines the ability of excitatory afferent inputs to trigger time-locked bursting activity and 2) that ERG K+ current in DA neurons provides a safeguard from depolarization block, and by extension ensures that synaptically driven increases in DA cell excitability are encoded and propagated to DA targets. "Depolarization block", a persistent depolarization in which action potentials are no longer sustained due to persistent sodium channel inactivation, is hypothesized to occur when the inward currents that promote bursting activity dominate the outward currents that attenuate it. A decrease in SK current is predicted to facilitate both spontaneous and afferent-driven bursting, and in the presence of reduced ERG K+ cur- rent, to induce depolarization block. The specific aims are to test the predictions that 1) functional ERG K+ channels are expressed in dopamine neurons, 2) a reduction in SK current facilitates simulated spontaneous and synaptically-driven bursting activity in vitro, and that this bursting activity results to depolarization block unless relieved by the ERG K+ current, and 3) modulation of SK and/or ERG currents in DA neurons alters their ability to produce both spontaneous bursts as well as bursts in response to excitatory synaptic input in vivo. Electrophysiological recordings in rat brain combined with both complex multi-compartmental and simple neural models will be utilized in concert with experiments conducted with selective pharmacological agents to titrate the contribution of these currents to dopaminergic signaling. The modeling component is required to understand the mechanisms underlying the generation of both types of bursting because of the complexity of the oscillatory mechanisms and the interactions between different regions of the dopaminergic neuron that likely function as coupled oscillators. The collective activity of the system is likely to have fundamentally different dynamics in vivo compared to in vitro because of the interaction of intrinsic and synaptic mechanisms. A better understanding of how the firing pattern of DA neurons is regulated could result in the development of novel therapeutic targets for treating a variety of DA related disorders including Parkinson's disease, schizophrenia, drug and alcohol abuse. Both experiments and computer modeling will be used to characterize the contributions of the ether-a-go-go-related gene (ERG) and small conductance (SK) potassium channels to the electrical activity of midbrain dopamine neurons. A better understanding of this activity, and specifically of the role of these currents in regulating the firing pattern in these neurons, may lead to improved therapeutics for both Parkinson's and schizophrenia, as well as other disorders involving dopaminergic signaling such as drug abuse.
描述(由申请人提供):总体目标是描述多巴胺神经元的内在特性对突触整合的贡献。具体来说,我们将确定以太-a-go-go相关基因(ERG)和/或小电导钙激活(SK)钾通道的调节是否会改变它们对兴奋性突触输入的反应。多巴胺神经元的爆发被认为传递奖励预测和显著性信号。精神分裂症被认为是由多巴胺能信号紊乱引起的。抗精神病药物减弱紊乱的多巴胺能信号,缓解精神病,通常部分阻断K+ ERG电流。SK电流掩盖了多巴胺神经元的背景突发放电,我们提出ERG K+电流作为突发放电的一个额外的、新的内在成分。在本应用中需要测试的具体假设是:1)自发爆发活动的水平决定了兴奋性传入输入触发时间锁定爆发活动的能力;2)DA神经元中的ERG K+电流提供了去极化阻断的保护,并通过扩展确保突触驱动的DA细胞兴奋性增加被编码并传播到DA目标。“去极化阻滞”是一种持续的去极化,即由于钠离子通道持续失活,动作电位不再持续,当促进爆发活动的内向电流主导减弱爆发活动的外向电流时,就会发生这种情况。预计SK电流的减少会促进自发和传入驱动的爆发,并且在ERG K+电流减少的情况下,会诱导去极化阻滞。具体目的是验证以下预测:1)功能性ERG K+通道在多巴胺神经元中表达;2)SK电流的降低促进了体外模拟的自发和突触驱动的破裂活动,并且这种破裂活动导致去极化阻滞,除非ERG K+电流缓解。3) DA神经元中SK和/或ERG电流的调节改变了它们在体内产生自发脉冲和响应兴奋性突触输入的脉冲的能力。大鼠脑电生理记录将结合复杂的多室和简单的神经模型,并与选择性药物实验相结合,以滴定这些电流对多巴胺能信号的贡献。由于振荡机制的复杂性和多巴胺能神经元不同区域之间可能作为耦合振荡器的相互作用,需要建模组件来理解这两种类型的爆发产生的机制。由于内在机制和突触机制的相互作用,该系统的集体活动可能在体内与体外具有根本不同的动力学。更好地了解DA神经元的放电模式是如何被调节的,可能会导致开发新的治疗靶点,用于治疗各种DA相关疾病,包括帕金森病、精神分裂症、药物和酒精滥用。实验和计算机模型都将用于描述以太-a-go-go相关基因(ERG)和小电导(SK)钾通道对中脑多巴胺神经元电活动的贡献。更好地了解这种活动,特别是这些电流在调节这些神经元放电模式中的作用,可能会改善帕金森病和精神分裂症的治疗方法,以及其他涉及多巴胺能信号传导的疾病,如药物滥用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmen Castro Canavier其他文献

Carmen Castro Canavier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carmen Castro Canavier', 18)}}的其他基金

A Dynamic Diversity of Dopamine Neurons
多巴胺神经元的动态多样性
  • 批准号:
    9247593
  • 财政年份:
    2017
  • 资助金额:
    $ 34.25万
  • 项目类别:
CRCNS: Cholinergic contribution to hippocampal information processing
CRCNS:胆碱能对海马信息处理的贡献
  • 批准号:
    10183326
  • 财政年份:
    2017
  • 资助金额:
    $ 34.25万
  • 项目类别:
COBRE: LSU: COMPUTATIONAL NEUROSCIENCE CORE FACILITY
COBRE:LSU:计算神经科学核心设施
  • 批准号:
    8359601
  • 财政年份:
    2011
  • 资助金额:
    $ 34.25万
  • 项目类别:
COBRE: LSU: COMPUTATIONAL NEUROSCIENCE CORE FACILITY
COBRE:LSU:计算神经科学核心设施
  • 批准号:
    8167389
  • 财政年份:
    2010
  • 资助金额:
    $ 34.25万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    7615467
  • 财政年份:
    2009
  • 资助金额:
    $ 34.25万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    8197705
  • 财政年份:
    2009
  • 资助金额:
    $ 34.25万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    7753672
  • 财政年份:
    2009
  • 资助金额:
    $ 34.25万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    8391716
  • 财政年份:
    2009
  • 资助金额:
    $ 34.25万
  • 项目类别:
CRCNS: Phase resetting predicts synchronization in hybrid hippocampal circuits
CRCNS:相位重置预测混合海马回路的同步
  • 批准号:
    7677250
  • 财政年份:
    2008
  • 资助金额:
    $ 34.25万
  • 项目类别:
CRCNS: Phase resetting predicts synchronization in hybrid hippocampal circuits
CRCNS:相位重置预测混合海马回路的同步
  • 批准号:
    7890498
  • 财政年份:
    2008
  • 资助金额:
    $ 34.25万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 34.25万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了