CRCNS: Phase resetting predicts synchronization in hybrid hippocampal circuits

CRCNS:相位重置预测混合海马回路的同步

基本信息

  • 批准号:
    7677250
  • 负责人:
  • 金额:
    $ 31.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-20 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Theta (4-12 Hz) and gamma (30-80 Hz) oscillations in the hippocampus are likely to be substrates for critical cognitive functions. To play such a role, the theta and gamma rhythms must be coherent across long distances (mm or more) in the brain. The mechanisms that lead to synchronization within and between local circuits separated by conduction delays are poorly understood. In the proposed work, two lab groups will collaborate to apply novel theoretical concepts of local and long-distance synchronization in electrophysiological experiments. Using the dynamic clamp technique, hippocampal microcircuits, containing biological and computationally simulated neurons that interact in real time, will be constructed. Together, the proposed theoretical and experimental studies will test the hypothesis that short- and long-range synchronization can be understood using the properties of mathematical symmetry and phase resetting properties of individual neurons and specific local neuronal microcircuits. We hypothesize that the phase resetting curves of the oscillatory neural modules contain all the information necessary to predict synchronization behavior, that synchronization between distal modules is based on symmetry between oscillators with similar frequencies, that in the presence of sufficiently strong coupling the symmetric mechanism is robust to biological levels of heterogeneity, and that harmonic locking between theta and gamma rhythms may play an important role in oscillatory coherence. Specific Aim 1. Test the hypothesis that synchronization of distal gamma modules mediated by long range excitatory connections results from near-symmetry (i.e., similar intrinsic frequencies and inter-module conduction delays) and preferential synchronization among similar distal modules. We will test theoretical predictions of synchronization based on phase resetting curves using gamma modules containing pyramidal cells and fast-spiking basket cell interneurons. Specific Aim 2. Test the hypothesis that N:1 locking between the gamma and theta rhythm aligns the firing of local oriens-lacunosum moleculare (O-LM) interneurons with that of a gamma cycle, with a fixed number of missed gamma cycles between theta cycles. Existence and stability conditions for N:1 locking based on the phase resetting curves will be used to predict when such locking occur. We will also determine whether N:1 locking can be sufficient to synchronize multiple O-LM interneurons within a local module, or if common external perturbations in the presence of such locking are required to promote theta coherence within local circuits. Predictions from phase-response measurements will be tested in hybrid microcircuits representing distant local circuits. Specific Aim 3. Test the hypothesis that synchronization of distal gamma modules mediated by O-LM interneurons firing at theta frequency also emerges as a consequence of near symmetry. In the case of synchronized O-LM cells, this extension is straightforward, but in practice, synchronization between O-LM cells is not required. We will test theoretical predictions of synchronization based on phase resetting curves using gamma modules connected via O-LM interneurons. Intellectual Merit: A novel approach to the highly significant question of how neural oscillators can synchronize their activity, particularly in the presence of conduction delays, is presented here. The theoretical and experimental aspects of the proposal are integrated in a synergistic way. Broader Impacts: There is a significant and highly interdisciplinary training component of this project at the undergraduate (B. Bullock, M. Woodman), graduate and postgraduate levels. With respect to diversity, at least one of the principal trainees will be an underrepresented minority and one principal investigator is female.
描述(由申请人提供):海马体中的Theta(4-12 Hz)和Gamma(30-80 Hz)振荡可能是关键认知功能的底物。要发挥这样的作用,θ和γ节律必须在大脑中的长距离(毫米或更长)上保持一致。导致由传导延迟分隔的局部电路内部和之间的同步的机制知之甚少。在拟议的工作中,两个实验室小组将合作在电生理实验中应用本地和远程同步的新理论概念。使用动态钳技术,海马微电路,包含生物和计算模拟的神经元,在真实的时间相互作用,将被构建。总之,拟议的理论和实验研究将测试的假设,即短期和长期的同步可以理解使用的数学对称性和相位重置个别神经元和特定的本地神经元微电路的属性。我们假设振荡神经模块的相位重置曲线包含预测同步行为所需的所有信息,远端模块之间的同步是基于具有相似频率的振荡器之间的对称性,在存在足够强的耦合的情况下,对称机制对生物水平的异质性是鲁棒的,并且θ和γ节律之间的谐波锁定在振荡相干性中可能起重要作用。具体目标1.检验由远距离兴奋性连接介导的远端伽马模块的同步化是由近对称性(即,相似的固有频率和模块间传导延迟)和相似远端模块之间的优先同步。我们将测试同步化的理论预测的基础上,使用伽马模块的相位重置曲线含有锥体细胞和快速尖峰篮状细胞中间神经元。具体目标2。检验以下假设:伽马和θ节律之间的N:1锁定使局部方向-分子腔隙(O-LM)中间神经元的放电与伽马周期的放电对齐,θ周期之间有固定数量的错过伽马周期。基于相位复位曲线的N:1锁定的存在性和稳定性条件将被用来预测这种锁定何时发生。我们还将确定N:1锁定是否足以同步局部模块内的多个O-LM中间神经元,或者是否需要在存在此类锁定的情况下进行常见的外部扰动来促进局部电路内的theta相干性。从相位响应测量的预测将在代表远程本地电路的混合微电路中进行测试。具体目标3。测试以下假设:由以θ频率发射的O-LM中间神经元介导的远端伽马模块的同步也是近对称的结果。在同步的O-LM信元的情况下,该扩展是直接的,但是在实践中,不需要O-LM信元之间的同步。我们将测试同步的理论预测的基础上使用伽马模块通过O-LM interneurons连接的相位重置曲线。智力优势:神经振荡器如何同步其活动的高度重要的问题,特别是在存在传导延迟的一种新的方法,在这里。该提案的理论和实验方面以协同的方式整合。更广泛的影响:有一个重要的和高度跨学科的培训组成部分,这个项目在本科(B。布洛克,M. Woodman),本科和研究生水平。关于多样性,至少有一名主要受训人员是代表性不足的少数民族,一名主要调查员是女性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmen Castro Canavier其他文献

Carmen Castro Canavier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carmen Castro Canavier', 18)}}的其他基金

A Dynamic Diversity of Dopamine Neurons
多巴胺神经元的动态多样性
  • 批准号:
    9247593
  • 财政年份:
    2017
  • 资助金额:
    $ 31.13万
  • 项目类别:
CRCNS: Cholinergic contribution to hippocampal information processing
CRCNS:胆碱能对海马信息处理的贡献
  • 批准号:
    10183326
  • 财政年份:
    2017
  • 资助金额:
    $ 31.13万
  • 项目类别:
COBRE: LSU: COMPUTATIONAL NEUROSCIENCE CORE FACILITY
COBRE:LSU:计算神经科学核心设施
  • 批准号:
    8359601
  • 财政年份:
    2011
  • 资助金额:
    $ 31.13万
  • 项目类别:
COBRE: LSU: COMPUTATIONAL NEUROSCIENCE CORE FACILITY
COBRE:LSU:计算神经科学核心设施
  • 批准号:
    8167389
  • 财政年份:
    2010
  • 资助金额:
    $ 31.13万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    7996573
  • 财政年份:
    2009
  • 资助金额:
    $ 31.13万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    7615467
  • 财政年份:
    2009
  • 资助金额:
    $ 31.13万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    8197705
  • 财政年份:
    2009
  • 资助金额:
    $ 31.13万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    7753672
  • 财政年份:
    2009
  • 资助金额:
    $ 31.13万
  • 项目类别:
Intrinsic currents modulate synaptic integration in dopamine neurons
内在电流调节多巴胺神经元的突触整合
  • 批准号:
    8391716
  • 财政年份:
    2009
  • 资助金额:
    $ 31.13万
  • 项目类别:
CRCNS: Phase resetting predicts synchronization in hybrid hippocampal circuits
CRCNS:相位重置预测混合海马回路的同步
  • 批准号:
    7890498
  • 财政年份:
    2008
  • 资助金额:
    $ 31.13万
  • 项目类别:

相似海外基金

The effect of Biological Rhythm Disruption on Eating and Cognitive Behavior from the Viewpoint of Inflammation in the Brain
从大脑炎症的角度观察生物节律紊乱对饮食和认知行为的影响
  • 批准号:
    19K19421
  • 财政年份:
    2019
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the biological mechanisms of how pharmacologically-induced glucose dysregulation affects the brain and behavior
了解药物引起的葡萄糖失调如何影响大脑和行为的生物学机制
  • 批准号:
    RGPIN-2015-05531
  • 财政年份:
    2019
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the biological mechanisms of how pharmacologically-induced glucose dysregulation affects the brain and behavior
了解药物引起的葡萄糖失调如何影响大脑和行为的生物学机制
  • 批准号:
    RGPIN-2015-05531
  • 财政年份:
    2018
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the biological mechanisms of how pharmacologically-induced glucose dysregulation affects the brain and behavior
了解药物引起的葡萄糖失调如何影响大脑和行为的生物学机制
  • 批准号:
    RGPIN-2015-05531
  • 财政年份:
    2017
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the biological mechanisms of how pharmacologically-induced glucose dysregulation affects the brain and behavior
了解药物引起的葡萄糖失调如何影响大脑和行为的生物学机制
  • 批准号:
    RGPIN-2015-05531
  • 财政年份:
    2016
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the biological mechanisms of how pharmacologically-induced glucose dysregulation affects the brain and behavior
了解药物引起的葡萄糖失调如何影响大脑和行为的生物学机制
  • 批准号:
    RGPIN-2015-05531
  • 财政年份:
    2015
  • 资助金额:
    $ 31.13万
  • 项目类别:
    Discovery Grants Program - Individual
Brain, Behavior and Biological Rhythms
大脑、行为和生物节律
  • 批准号:
    6720582
  • 财政年份:
    1995
  • 资助金额:
    $ 31.13万
  • 项目类别:
Brain, Behavior and Biological Rhythms
大脑、行为和生物节律
  • 批准号:
    6806545
  • 财政年份:
    1995
  • 资助金额:
    $ 31.13万
  • 项目类别:
BEHAVIOR, BIOLOGICAL RHYTHMS AND BRAIN
行为、生物节律和大脑
  • 批准号:
    2264410
  • 财政年份:
    1995
  • 资助金额:
    $ 31.13万
  • 项目类别:
BEHAVIOR, BIOLOGICAL RHYTHMS AND BRAIN
行为、生物节律和大脑
  • 批准号:
    2668966
  • 财政年份:
    1995
  • 资助金额:
    $ 31.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了