How does Wlds protect severed axons?

Wlds 如何保护切断的轴突?

基本信息

  • 批准号:
    8039180
  • 负责人:
  • 金额:
    $ 34.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Axon degeneration occurs after nervous system injury and during neurodegenerative diseases but very little is known about how injured or diseased axons destroy themselves. Recent work on the mouse Wallerian degeneration slow molecule (Wlds), which potently protects severed axons from degeneration, has revealed that axon degeneration is an active process of axon auto-destruction. Amazingly, Wlds can also suppress axon degeneration after chemical insult and delay disease onset in a number of mouse models of human neurodegenerative disease. Wlds is therefore a broadly neuroprotective molecule and understanding its molecular action is of paramount importance. We have developed the first Drosophila model to study injury-induced axon degeneration and shown that mouse Wlds can also potently suppress axon degeneration in severed Drosophila axons. These data indicate that the molecular mechanism that drive axon auto-destruction after injury are well-conserved in Drosophila and mammals, and open the door to powerful molecular-genetic approaches only available in Drosophila to study axon auto-destruction. In this proposal we will: (1) define the domains of the Wlds protein essential for it to protect axons; (2) determine whether Wlds interacts with the ubiquitin proteasome, NAD biosynthetic, or apoptotic machinery to block axon auto-destruction; and (3) perform the first ever forward genetic screens for mutation that block axon degeneration after injury or Wlds neuroprotective function. These studies represent the beginning of a long-term comprehensive effort to understand how axons destroy themselves after injury, and how Wlds impinges upon these pathways. We expect our findings to have a major impact on our understanding of axon degeneration after injury or during disease in humans, and the novel molecules we identify will be excellent candidates for therapeutic intervention in human axonopathies. PUBLIC HEALTH RELEVANCE: After brain injury or during neurological disease neuronal fibers degenerate, connections in the brain are lost, and neural function is irreversibly compromised. We are studying the cellular action of an extraordinary molecule, WldS, which suppresses this loss of neuronal fibers. Our work will identify many new molecules that will be targets for treatment of patients after brain injury or during neurological disease.
描述(由申请人提供):轴突变性发生在神经系统损伤后和神经退行性疾病期间,但对受损或患病的轴突如何破坏自身知之甚少。最近对小鼠Wallerian变性慢分子(Wlds)的研究表明,轴突变性是轴突自身破坏的一个主动过程,Wlds可以有效地保护切断的轴突免于变性。令人惊讶的是,Wlds还可以抑制化学损伤后的轴突变性,并在许多人类神经退行性疾病的小鼠模型中延迟疾病发作。因此,Wlds是一种广泛的神经保护分子,了解其分子作用至关重要。我们已经开发了第一个果蝇模型来研究损伤诱导的轴突变性,并表明小鼠Wlds也可以有效地抑制切断的果蝇轴突中的轴突变性。这些数据表明,损伤后驱动轴突自动破坏的分子机制在果蝇和哺乳动物中是保守的,并为研究轴突自动破坏的强大分子遗传学方法打开了大门。在本提案中,我们将:(1)确定Wlds蛋白保护轴突所必需的结构域;(2)确定Wlds是否与泛素蛋白酶体、NAD生物合成或凋亡机制相互作用以阻断轴突自动破坏;和(3)对阻断损伤后轴突变性或Wlds神经保护功能的突变进行首次正向遗传筛选。这些研究代表了长期全面努力的开始,以了解轴突如何在损伤后破坏自己,以及Wlds如何影响这些通路。我们希望我们的研究结果对我们理解人类损伤后或疾病期间的轴突变性产生重大影响,我们确定的新分子将成为人类轴突病治疗干预的优秀候选者。公共卫生相关性:脑损伤后或神经系统疾病期间,神经纤维退化,脑中的连接丢失,神经功能不可逆地受损。我们正在研究一种特殊分子WldS的细胞作用,它可以抑制神经纤维的损失。我们的工作将确定许多新的分子,这些分子将成为脑损伤或神经系统疾病患者治疗的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc R Freeman其他文献

Neuronal death or dismemberment mediated by Sox14
由 Sox14 介导的神经元死亡或肢解
  • DOI:
    10.1038/nn1209-1479
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Jeannette M Osterloh;Marc R Freeman
  • 通讯作者:
    Marc R Freeman

Marc R Freeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc R Freeman', 18)}}的其他基金

How do you build an astrocyte?
如何构建星形胶质细胞?
  • 批准号:
    10646059
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
2023 Glial Biology: Functional Interactions Among Glia and Neurons Gordon Research Conference and Gordon Research Seminar
2023年胶质细胞生物学:胶质细胞和神经元之间的功能相互作用戈登研究会议和戈登研究研讨会
  • 批准号:
    10609354
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Landis Award for Outstanding Mentorship
兰迪斯杰出指导奖
  • 批准号:
    10661432
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
  • 批准号:
    10645162
  • 财政年份:
    2021
  • 资助金额:
    $ 34.84万
  • 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
  • 批准号:
    10454296
  • 财政年份:
    2021
  • 资助金额:
    $ 34.84万
  • 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
  • 批准号:
    10316938
  • 财政年份:
    2021
  • 资助金额:
    $ 34.84万
  • 项目类别:
How do non-myelinating glia ensheath axons?
非髓鞘神经胶质细胞如何包裹轴突?
  • 批准号:
    10617726
  • 财政年份:
    2019
  • 资助金额:
    $ 34.84万
  • 项目类别:
How do non-myelinating glia ensheath axons?
非髓鞘神经胶质细胞如何包裹轴突?
  • 批准号:
    10397991
  • 财政年份:
    2019
  • 资助金额:
    $ 34.84万
  • 项目类别:
How do non-myelinating glia ensheath axons?
非髓鞘神经胶质细胞如何包裹轴突?
  • 批准号:
    9797524
  • 财政年份:
    2019
  • 资助金额:
    $ 34.84万
  • 项目类别:
Characterizing new genes that govern mitochondrial function in the axon
表征控制轴突线粒体功能的新基因
  • 批准号:
    9272960
  • 财政年份:
    2016
  • 资助金额:
    $ 34.84万
  • 项目类别:

相似海外基金

Mechanisms that underlie the life/death decisions in a cell that activated apoptotic caspases
细胞中激活凋亡半胱天冬酶的生/死决策的机制
  • 批准号:
    10607815
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Nuclear and chromatin aberrations during non-apoptotic cell death in C. elegans and mammals
线虫和哺乳动物非凋亡细胞死亡过程中的核和染色质畸变
  • 批准号:
    10723868
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Non-apoptotic functions of caspase-3 in neural development
Caspase-3在神经发育中的非凋亡功能
  • 批准号:
    10862033
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Apoptotic Donor Leukocytes to Promote Kidney Transplant Tolerance
凋亡供体白细胞促进肾移植耐受
  • 批准号:
    10622209
  • 财政年份:
    2023
  • 资助金额:
    $ 34.84万
  • 项目类别:
Design of apoptotic cell mimetic anti-inflammatory polymers for the treatment of cytokine storm
用于治疗细胞因子风暴的模拟凋亡细胞抗炎聚合物的设计
  • 批准号:
    22H03963
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identifying the mechanisms behind non-apoptotic functions of mitochondrial matrix-localized MCL-1
确定线粒体基质定位的 MCL-1 非凋亡功能背后的机制
  • 批准号:
    10537709
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Activation of non-apoptotic cell death by the DNA damage response
DNA 损伤反应激活非凋亡细胞死亡
  • 批准号:
    10388929
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Environmental Carcinogens Induce Minority MOMP to Initiate Carcinogenesis in Lung Cancer and Mesothelioma whileMaintaining Apoptotic Resistance via Mcl-1
环境致癌物诱导少数 MOMP 引发肺癌和间皮瘤的癌变,同时通过 Mcl-1 维持细胞凋亡抵抗
  • 批准号:
    10356565
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
  • 批准号:
    10708827
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
  • 批准号:
    10538071
  • 财政年份:
    2022
  • 资助金额:
    $ 34.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了