RA post request re Dave Wark's T2k spokesperson position
RA 就 Dave Wark 的 T2k 发言人职位提出请求
基本信息
- 批准号:ST/F001924/1
- 负责人:
- 金额:$ 27.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last decade experiments throughout the world have demonstrated that the particles known as neutrinos have very different properties than was expected in the Standard Model of particle physics. In the Standard Model neutrinos come in three different kinds, called 'flavours' - electron, muon, and tau neutrinos - and these flavours are immutable. Once a neutrino is produced as one flavour it never changes. Standard Model neutrinos were also thought to have no rest mass, and therefore to always travel at the speed of light. We now know that neutrinos, in fact, have mass, and that the flavours of neutrinos can mix in a particular way we call 'neutrino oscillations' whereby a beam of one flavour of neutrino will turn into the other flavours as it propagates. The T2K experiment will make new measurements of unprecedented precision of these neutrino oscillations in the hopes of better understanding the phenomenon and also trying to understand the implications of neutrino oscillations for other areas of physics. In particular, neutrino oscillations are described by three mixing angles that effect how the different flavours mix with each other, and existing experiments have only measured two of these angles. It is the goal of T2K to observe effects arising from the third angle, and T2K should be about ten times more sensitive than existing experiments which have only set an upper limit on the size of this angle. This third angle is particularly interesting to physicists, because if it is non-zero it opens the possibility of observing violations of a symmetry called CP in neutrino oscillations. CP violation would make the oscillations of neutrino different from the oscillations of anti-neutrinos, and this effect may be related to one of the biggest mysteries in fundamental physics - why is there more matter than anti-matter in the universe? This CP violation is the target of the longer term plans for an ambitious facility called a Neutrino Factory, but since the third angle must be larger than zero for this to succeed a measurement of this third angle would be a key step forward in neutrino oscillation physics. T2K works by creating a powerful beam of muon neutrinos at the J-PARC facility on Japan's east coast and then allowing it to propagate through the ground underneath Japan to a huge underground detector called Super Kamiokande near Japan's west coast. Neutrino oscillations will make most of these muon neutrinos change flavour, and if the third angle is not zero some of them will turn into electron neutrinos which can be seen in Super Kamiokande. Detectors will be built at J-PARC to measure the properties of the neutrino beam before it propagates between the two facilities. The UK will contribute major elements of these near detectors at J-PARC (as well as elements of the neutrino beamline). The purpose of these near detectors is to make sure that we know how many electron neutrinos were in the beam to start with (you cannot make a pure muon neutrino beam, there is always some contamination) and how many interactions there are that might fool us into thinking there are electron neutrinos when there aren't. In order to perform the experiment these near detector measurements have to be compared to the observations by Super Kamiokande, and the RA requested in this grant would be in charge of the UK work on understanding and analysing the data from Super Kamiokande.
在过去的十年里,世界各地的实验已经证明,被称为中微子的粒子具有与粒子物理学标准模型中预期的非常不同的性质。在标准模型中,中微子有三种不同的类型,称为“味道”--电子中微子、μ子中微子和τ中微子--这些味道是不可变的。一旦中微子作为一种味道产生,它就永远不会改变。标准模型中微子也被认为没有静止质量,因此总是以光速运动。我们现在知道,中微子实际上是有质量的,而且中微子的味道可以以一种我们称之为“中微子振荡”的特殊方式混合,即一种味道的中微子束在传播过程中会变成另一种味道。T2 K实验将对这些中微子振荡进行前所未有的精确测量,希望能更好地理解这一现象,并试图理解中微子振荡对其他物理领域的影响。特别是,中微子振荡是由三个混合角来描述的,这三个混合角会影响不同的味道如何相互混合,而现有的实验只测量了其中的两个角。T2 K的目标是观察第三个角度产生的效应,T2 K应该比现有的实验灵敏十倍,现有的实验只对这个角度的大小设定了上限。这第三个角度对物理学家来说特别有趣,因为如果它不为零,它就有可能在中微子振荡中观察到称为CP的对称性的破坏。CP破坏将使中微子的振荡不同于反中微子的振荡,这种效应可能与基础物理学中最大的谜团之一有关-为什么宇宙中的物质比反物质多?这种CP破坏是一个雄心勃勃的设施的目标,称为中微子工厂,但由于第三个角度必须大于零,才能成功测量第三个角度将是中微子振荡物理学的关键一步。T2 K的工作原理是在日本东海岸的J-PARC设施中产生一束强大的μ子中微子,然后让它通过日本地下的地面传播到日本西海岸附近的一个名为Super Kamiokande的巨大地下探测器。中微子振荡会使大多数的μ子中微子变味,如果第三个角不为零,它们中的一些会变成电子中微子,这可以在超级神冈中看到。探测器将在J-PARC建造,以测量中微子束在两个设施之间传播之前的特性。联合王国将为J-PARC的这些近距离探测器提供主要元件(以及中微子束线元件)。这些近距离探测器的目的是确保我们知道束中有多少电子中微子(你不能制造纯μ子中微子束,总是有一些污染),以及有多少相互作用可能会欺骗我们认为有电子中微子,而实际上没有。为了进行实验,必须将这些近探测器测量结果与Super Kamiokande的观测结果进行比较,而本赠款中要求的RA将负责英国了解和分析Super Kamiokande数据的工作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam
- DOI:10.1103/physrevd.88.032002
- 发表时间:2013-04
- 期刊:
- 影响因子:0
- 作者:T2K Collaboration K. Abe;N. Abgrall;H. Aihara;T. Akiri;J. Albert;C. Andreopoulos;S. Aoki;A. Ariga;T. Ariga;S. Assylbekov;D. Autiero;M. Barbi;G. Barker;G. Barr;M. Bass;M. Batkiewicz;F. Bay;S. Bentham;V. Berardi;B. Berger;S. Berkman;I. Bertram;D. Beznosko;S. Bhadra;F. Blaszczyk;A. Blondel;C. Bojechko;S. Boyd;D. Brailsford;A. Bravar;C. Bronner;D. Brook-Roberge;N. Buchanan;R. Calland;J. Rodŕıguez;S. Cartwright;R. Castillo;M. Catanesi;A. Cervera;D. Cherdack;G. Christodoulou;A. Clifton;J. Coleman;S. Coleman;G. Collazuol;K. Connolly;L. Cremonesi;A. Curioni;A. Dabrowska;I. Dankó;R. Das;S. Davis;M. Day;J. D. André;P. Perio;G. Rosa;T. Dealtry;S. Dennis;C. Densham;F. Lodovico;S. Luise;J. Dobson;O. Drapier;T. Duboyski;F. Dufour;J. Dumarchez;S. Dytman;M. Dziewiecki;M. Dziomba;S. Emery;A. Ereditato;L. Escudero;A. Finch;E. Frank;M. Friend;Y. Fujii;Y. Fukuda;A. Furmanski;V. Galymov;A. Gaudín;S. Giffin;C. Giganti;K. Gilje;T. Golan;J. Gómez-Cadenas;M. Gonin;N. Grant;D. Gudin;D. Hadley;A. Haesler;M. Haigh;P. Hamilton;D. Hansen;T. Hara;M. Hartz;T. Hasegawa;N. Hastings;Y. Hayato;C. Hearty;R. Helmer;M. Hierholzer;J. Hignight;A. Hillairet;A. Himmel;T. Hiraki;S. Hirota;J. Holeczek;S. Horikawa;K. Huang;A. Ichikawa;K. Ieki;M. Ieva;M. Ikeda;J. Imber;J. Insler;T. Irvine;T. Ishida;T. Ishii;S. Ives;K. Iyogi;A. Izmaylov;A. Jacob;B. Jamieson;R. Johnson;J. Jo;P. Jonsson;K. Joo;C. Jung;A. Kaboth;H. Kaji;T. Kajita;H. Kakuno;J. Kameda;Y. Kanazawa;D. Karlen;I. Karpikov;E. Kearns;M. Khabibullin;F. Khanam;A. Khotjantsev;D. Kiełczewska;T. Kikawa;A. Kilinski;J. Kim;J. Kim;S. Kim;B. Kirby;J. Kisiel;P. Kitching;T. Kobayashi;G. Kogan;A. Kolaceke;A. Konaka;L. Kormos;A. Korzenev;K. Koseki;Y. Koshio;K. Kowalik;I. Kreslo;W. Kropp;H. Kubo;Y. Kudenko;S. Kumaratunga;R. Kurjata;T. Kutter;J. Lagoda;K. Laihem;A. Laing;M. Laveder;M. Lawe;M. Lazos;K. P. Lee;C. Licciardi;I. Lim;T. Lindner;C. Lister;R. P. Litchfield;A. Longhin;G. López;L. Ludovici;M. Macaire;L. Magaletti;K. Mahn;M. Małek;S. Manly;A. Marchionni;A. Marino;J. Marteau;J. Martin;T. Maruyama;J. Marzec;P. Masliah;E. Mathie;V. Matveev;K. Mavrokoridis;E. Mazzucato;N. McCauley;K. McFarland;C. Mcgrew;T. McLachlan;M. Messina;C. Metelko;M. Mezzetto;P. Mijakowski;C. Miller;A. Minamino;O. Mineev;S. Mine;A. Missert;M. Miura;L. Monfregola;S. Moriyama;T. Mueller;A. Murakami;M. Murdoch;S. Murphy;J. Myslik;T. Nagasaki;T. Nakadaira;M. Nakahata;T. Nakai;K. Nakajima;K. Nakamura;S. Nakayama;T. Nakaya;K. Nakayoshi;D. Naples;T. Nicholls;C. Nielsen;M. Nirkko;K. Nishikawa;Y. Nishimura;H. O'Keeffe;Y. Obayashi;R. Ohta;K. Okumura;T. Okusawa;W. Oryszczak;S. Oser;M. Otani;R. Owen;Y. Oyama;M. Pac;V. Palladino;V. Paolone;D. Payne;G. Pearce;O. Perevozchikov;J. Perkin;Y. Petrov;E. Guerra;P. Plonski;E. Popławska;B. Popov;M. Posiadała;J. Poutissou;R. Poutissou;P. Przewłocki;B. Quilain;E. Radicioni;P. Ratoff;M. Ravonel;M. Rayner;M. Reeves;E. Reinherz-Aronis;F. Retière;A. Robert;P. Rodrigues;E. Rondio;S. Roth;A. Rubbia;D. Ruterbories;R. Sacco;K. Sakashita;F. Sánchez;E. Scantamburlo;K. Scholberg;J. Schwehr;M. Scott;D. Scully;Y. Seiya;T. Sekiguchi;H. Sekiya;D. Sgalaberna;M. Shibata;M. Shiozawa;S. Short;Y. Shustrov;P. Sinclair;B. Smith;R. Smith;M. Smy;J. Sobczyk;H. Sobel;M. Sorel;L. Southwell;P. Stamoulis;J. Steinmann;B. Still;A. Suzuki;K. Suzuki;S. Suzuki;Y. Suzuki;T. Szegłowski;M. Szeptycka;R. Tacik;M. Tada;S. Takahashi;A. Takeda;Y. Takeuchi;H. Tanaka;M. Tanaka;M. Tanaka;I. Taylor;D. Terhorst;R. Terri;L. Thompson;A. Thorley;S. Tobayama;W. Toki;T. Tomura;Y. Totsuka;C. Touramanis;T. Tsukamoto;M. Tzanov;Y. Uchida;K. Ueno;A. Vacheret;M. Vagins;G. Vasseur;T. Wachala;A. Waldron;C. Walter;D. Wark;M. Wascko;A. Weber;R. Wendell;R. Wilkes;M. Wilking;C. Wilkinson;Z. Williamson;J. R. Wilson;R. Wilson;T. Wongjirad;Y. Yamada;K. Yamamoto;C. Yanagisawa;S. Yen;N. Yershov;M. Yokoyama;T. Yuan;A. Zalewska;L. Zambelli;K. Zaremba;M. Ziembicki;E. Zimmerman;M. Zito;J. Żmuda
- 通讯作者:T2K Collaboration K. Abe;N. Abgrall;H. Aihara;T. Akiri;J. Albert;C. Andreopoulos;S. Aoki;A. Ariga;T. Ariga;S. Assylbekov;D. Autiero;M. Barbi;G. Barker;G. Barr;M. Bass;M. Batkiewicz;F. Bay;S. Bentham;V. Berardi;B. Berger;S. Berkman;I. Bertram;D. Beznosko;S. Bhadra;F. Blaszczyk;A. Blondel;C. Bojechko;S. Boyd;D. Brailsford;A. Bravar;C. Bronner;D. Brook-Roberge;N. Buchanan;R. Calland;J. Rodŕıguez;S. Cartwright;R. Castillo;M. Catanesi;A. Cervera;D. Cherdack;G. Christodoulou;A. Clifton;J. Coleman;S. Coleman;G. Collazuol;K. Connolly;L. Cremonesi;A. Curioni;A. Dabrowska;I. Dankó;R. Das;S. Davis;M. Day;J. D. André;P. Perio;G. Rosa;T. Dealtry;S. Dennis;C. Densham;F. Lodovico;S. Luise;J. Dobson;O. Drapier;T. Duboyski;F. Dufour;J. Dumarchez;S. Dytman;M. Dziewiecki;M. Dziomba;S. Emery;A. Ereditato;L. Escudero;A. Finch;E. Frank;M. Friend;Y. Fujii;Y. Fukuda;A. Furmanski;V. Galymov;A. Gaudín;S. Giffin;C. Giganti;K. Gilje;T. Golan;J. Gómez-Cadenas;M. Gonin;N. Grant;D. Gudin;D. Hadley;A. Haesler;M. Haigh;P. Hamilton;D. Hansen;T. Hara;M. Hartz;T. Hasegawa;N. Hastings;Y. Hayato;C. Hearty;R. Helmer;M. Hierholzer;J. Hignight;A. Hillairet;A. Himmel;T. Hiraki;S. Hirota;J. Holeczek;S. Horikawa;K. Huang;A. Ichikawa;K. Ieki;M. Ieva;M. Ikeda;J. Imber;J. Insler;T. Irvine;T. Ishida;T. Ishii;S. Ives;K. Iyogi;A. Izmaylov;A. Jacob;B. Jamieson;R. Johnson;J. Jo;P. Jonsson;K. Joo;C. Jung;A. Kaboth;H. Kaji;T. Kajita;H. Kakuno;J. Kameda;Y. Kanazawa;D. Karlen;I. Karpikov;E. Kearns;M. Khabibullin;F. Khanam;A. Khotjantsev;D. Kiełczewska;T. Kikawa;A. Kilinski;J. Kim;J. Kim;S. Kim;B. Kirby;J. Kisiel;P. Kitching;T. Kobayashi;G. Kogan;A. Kolaceke;A. Konaka;L. Kormos;A. Korzenev;K. Koseki;Y. Koshio;K. Kowalik;I. Kreslo;W. Kropp;H. Kubo;Y. Kudenko;S. Kumaratunga;R. Kurjata;T. Kutter;J. Lagoda;K. Laihem;A. Laing;M. Laveder;M. Lawe;M. Lazos;K. P. Lee;C. Licciardi;I. Lim;T. Lindner;C. Lister;R. P. Litchfield;A. Longhin;G. López;L. Ludovici;M. Macaire;L. Magaletti;K. Mahn;M. Małek;S. Manly;A. Marchionni;A. Marino;J. Marteau;J. Martin;T. Maruyama;J. Marzec;P. Masliah;E. Mathie;V. Matveev;K. Mavrokoridis;E. Mazzucato;N. McCauley;K. McFarland;C. Mcgrew;T. McLachlan;M. Messina;C. Metelko;M. Mezzetto;P. Mijakowski;C. Miller;A. Minamino;O. Mineev;S. Mine;A. Missert;M. Miura;L. Monfregola;S. Moriyama;T. Mueller;A. Murakami;M. Murdoch;S. Murphy;J. Myslik;T. Nagasaki;T. Nakadaira;M. Nakahata;T. Nakai;K. Nakajima;K. Nakamura;S. Nakayama;T. Nakaya;K. Nakayoshi;D. Naples;T. Nicholls;C. Nielsen;M. Nirkko;K. Nishikawa;Y. Nishimura;H. O'Keeffe;Y. Obayashi;R. Ohta;K. Okumura;T. Okusawa;W. Oryszczak;S. Oser;M. Otani;R. Owen;Y. Oyama;M. Pac;V. Palladino;V. Paolone;D. Payne;G. Pearce;O. Perevozchikov;J. Perkin;Y. Petrov;E. Guerra;P. Plonski;E. Popławska;B. Popov;M. Posiadała;J. Poutissou;R. Poutissou;P. Przewłocki;B. Quilain;E. Radicioni;P. Ratoff;M. Ravonel;M. Rayner;M. Reeves;E. Reinherz-Aronis;F. Retière;A. Robert;P. Rodrigues;E. Rondio;S. Roth;A. Rubbia;D. Ruterbories;R. Sacco;K. Sakashita;F. Sánchez;E. Scantamburlo;K. Scholberg;J. Schwehr;M. Scott;D. Scully;Y. Seiya;T. Sekiguchi;H. Sekiya;D. Sgalaberna;M. Shibata;M. Shiozawa;S. Short;Y. Shustrov;P. Sinclair;B. Smith;R. Smith;M. Smy;J. Sobczyk;H. Sobel;M. Sorel;L. Southwell;P. Stamoulis;J. Steinmann;B. Still;A. Suzuki;K. Suzuki;S. Suzuki;Y. Suzuki;T. Szegłowski;M. Szeptycka;R. Tacik;M. Tada;S. Takahashi;A. Takeda;Y. Takeuchi;H. Tanaka;M. Tanaka;M. Tanaka;I. Taylor;D. Terhorst;R. Terri;L. Thompson;A. Thorley;S. Tobayama;W. Toki;T. Tomura;Y. Totsuka;C. Touramanis;T. Tsukamoto;M. Tzanov;Y. Uchida;K. Ueno;A. Vacheret;M. Vagins;G. Vasseur;T. Wachala;A. Waldron;C. Walter;D. Wark;M. Wascko;A. Weber;R. Wendell;R. Wilkes;M. Wilking;C. Wilkinson;Z. Williamson;J. R. Wilson;R. Wilson;T. Wongjirad;Y. Yamada;K. Yamamoto;C. Yanagisawa;S. Yen;N. Yershov;M. Yokoyama;T. Yuan;A. Zalewska;L. Zambelli;K. Zaremba;M. Ziembicki;E. Zimmerman;M. Zito;J. Żmuda
Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector
使用 T2K INGRID 探测器测量 1-3 GeV 能量范围内的 μ 中微子带电电流截面
- DOI:10.1103/physrevd.93.072002
- 发表时间:2016
- 期刊:
- 影响因子:5
- 作者:Abe K
- 通讯作者:Abe K
Observation of electron neutrino appearance in a muon neutrino beam.
- DOI:10.1103/physrevlett.112.061802
- 发表时间:2013-11
- 期刊:
- 影响因子:8.6
- 作者:K. Abe;J. Ádám;H. Aihara;T. Akiri;C. Andreopoulos;S. Aoki;A. Ariga;T. Ariga;S. Assylbekov-S.-Assylbek
- 通讯作者:K. Abe;J. Ádám;H. Aihara;T. Akiri;C. Andreopoulos;S. Aoki;A. Ariga;T. Ariga;S. Assylbekov-S.-Assylbek
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1 0 20 protons on target
通过 T2K 实验对目标上的 6.6 × 1 0 20 质子进行的中微子振荡测量
- DOI:10.1103/physrevd.91.072010
- 发表时间:2015
- 期刊:
- 影响因子:5
- 作者:Abe K
- 通讯作者:Abe K
Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam.
用加速器产生的离轴光束测量 μ 子反中微子振荡。
- DOI:10.1103/physrevlett.116.181801
- 发表时间:2016
- 期刊:
- 影响因子:8.6
- 作者:Abe K
- 通讯作者:Abe K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dave Wark其他文献
Dave Wark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dave Wark', 18)}}的其他基金
HyperK Bridging Nov 23 - Mar 26
HyperK 桥接 11 月 23 日 - 3 月 26 日
- 批准号:
ST/Y005988/1 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Research Grant
相似国自然基金
基于可见光环化反应的Post-Iboga类吲哚生物碱不对称集群合成
- 批准号:22361048
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
- 批准号:82372202
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于菌群-肠-脑轴研究TMAO通过POST1/SREBP2调节星形胶质细胞胆固醇代谢参与针刺减轻糖尿病认知功能障碍的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
- 批准号:32000529
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
- 批准号:31970707
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
含21微米和30微米辐射特征的星周包层中的气态分子
- 批准号:11973099
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
缺氧通过eIF4E2/GSK3β信号通路调控细胞衰老的作用及机制
- 批准号:31970682
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
蛋白质激酶MAPK7参与纤毛组装的功能和分子机理
- 批准号:31972888
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
辅酶A类代谢中间产物参与组蛋白表观遗传修饰调控肝细胞代谢网络对高油脂营养应答的机制研究
- 批准号:91957110
- 批准年份:2019
- 资助金额:83.0 万元
- 项目类别:重大研究计划
相似海外基金
Genetics and Immune Predictors for Recurrent Glomerular Diseases in the Kidney Allograft
同种异体移植肾中复发性肾小球疾病的遗传学和免疫预测因子
- 批准号:
10637158 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
ShEEP Request for MagVenture rTMS machine with EEG and fMRI synchronization
ShEEP 请求配备 EEG 和 fMRI 同步功能的 MagVenture rTMS 机器
- 批准号:
10740832 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Vascular Discovery, From Genes to Medicine 2023
血管发现,从基因到医学 2023
- 批准号:
10683501 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Optimizing an IMB-guided intervention to support HIV self-testing and PrEP uptake among YMSM: A pilot factorial RCT
优化 IMB 指导的干预措施,以支持 YMSM 中的 HIV 自我检测和 PrEP 吸收:试点因子随机对照试验
- 批准号:
10796690 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Acquisition of OrbiTrap Eclipse w/FAIMS mass spectrometer
收购 OrbiTrap Eclipse 和 FAIMS 质谱仪
- 批准号:
10412531 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别:
Digital implementation support strategies for caregiver home practice
护理人员家庭实践的数字化实施支持策略
- 批准号:
10667596 - 财政年份:2022
- 资助金额:
$ 27.95万 - 项目类别: