Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
基本信息
- 批准号:8176619
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-06 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAmygdaloid structureArchitectureAreaAxonBehavioralBindingBrainCalcium/calmodulin-dependent protein kinaseCell DensityCell membraneCellsCharacteristicsCytoskeletonDataDendritesDependovirusDestinationsDetergentsDevelopmentElectron MicroscopyFunctional disorderGene ExpressionGenesGoalsHorseradish PeroxidaseImmediate-Early GenesInfectionInjection of therapeutic agentLabelLateralLearningLightLiteratureMapsMembraneMethodsMicroscopicMorphologyNeuroanatomyNeurobiologyNeuronsNeurosciencesOrganellesOutputPhaseolus vulgaris leucoagglutininProteinsRattusReporter GenesResearchSiteSpecificityStructureSynapsesSystemTemporal LobeTestingTissue PreservationTissuesTracerTrainingTransfectionTravelViralViral VectorVirusWorkbrain cellcalmodulin-dependent protein kinase IIconditioned fearexcitatory neuronexperiencein vivointerestlight microscopynervous system disorderneural circuitneuronal cell bodynovelpreventpromoterrelating to nervous systemresearch studyresponseretrograde transportsuccesstooluptake
项目摘要
DESCRIPTION (provided by applicant): The connections between neurons compose the basic structure of the brain, through which all of its functions are expressed. Mapping and characterizing these connections is fundamental to neuroscience, as no brain system can be understood if its architecture is unknown. Neuroanatomical tracers have been used for decades to reveal connectivity in much of the brain, but the information they provide is limited. Tracers are compounds which are transported along axons and allow their origin, destination, or both to be visualized. It is difficult to control the specificity of existing tracers, which leads to inconsistent and unreliable results. To accurately map connectivity, the existence of synaptic connections between identified neurons must be verified at the electron microscopy (EM) level. Furthermore, EM studies of synapse morphology should ideally be carried out on labeled connections. The few existing tracers that are compatible with EM are not compatible with morphological studies due to severely compromised ultrastructure. We have conducted extensive morphological and neuroanatomical tracer studies at the EM level on our system of interest, the adult rat lateral amygdala. We propose to develop novel tracers which will label specific cells for light microscopy and EM while preserving high quality ultrastructure for morphological studies. Using a viral vector, we will express a membrane-targeted form of the EM label horseradish peroxidase (HRP) in adult rat neurons. Unlike current tracers, HRP can be visualized without subjecting tissue to detergents which damage EM ultrastructure. This allows good preservation of tissue morphology, while restricting the HRP to the membrane prevents the label from obscuring any cellular organelles. We will place the membrane-bound HRP gene under the control of one of two different promoters. The first, the calcium/calmodulin-dependent protein kinase II promoter, will restrict expression of the label to excitatory neurons. Combined with the fact that viral transfection is restricted to cell bodies (which conventional tracer uptake is not), this will be the most spatially and functionally specific tracer available. The second promoter will be from the activity-regulated cytoskeleton-associated protein Arc, which is expressed in response to strong synaptic activation and behavioral experience. This will allow identification of the axons and dendrites of cells activated during learning and plasticity experiments such that their synapses can be specifically examined. The tools we propose to create will have a broad range of applications in neuroanatomy, neurobiology, and plasticity studies throughout the brain.
PUBLIC HEALTH RELEVANCE: Mapping and characterizing the connectivity between brain cells is fundamental to understanding how the brain works. Many neurological diseases involve dysfunction of particular brain circuits or connections, and it is essential to elucidate and examine these connections in both normal and diseased brains. The goal of this project is to develop novel tools to map neural connections and visualize them clearly at the microscopic level.
描述(申请人提供):神经元之间的连接构成了大脑的基本结构,所有的功能都通过这个结构表达出来。绘制和描述这些联系是神经科学的基础,因为如果大脑系统的结构未知,就无法理解它。几十年来,神经解剖学示踪器一直被用来揭示大脑大部分区域的连通性,但它们提供的信息有限。示踪剂是沿着轴突运输的化合物,可以直观地显示它们的来源、目的地或两者。现有示踪剂的特异性难以控制,导致结果不一致和不可靠。为了准确地绘制连接图,必须在电子显微镜(EM)水平上验证已识别神经元之间是否存在突触连接。此外,突触形态的EM研究最好是在标记的连接上进行。现有的少数与EM相容的示踪剂,由于超微结构严重受损,与形态学研究不相容。我们在EM水平上对我们感兴趣的系统--成年大鼠杏仁核--进行了广泛的形态学和神经解剖学示踪研究。我们建议开发新的示踪剂,它将标记特定的细胞用于光学显微镜和EM,同时保留高质量的超微结构用于形态学研究。利用病毒载体,我们将在成年大鼠神经元中表达一种膜靶向形式的EM标记辣根过氧化物酶(HRP)。与目前的示踪剂不同,HRP可以在不使组织受到破坏EM超微结构的洗涤剂的情况下被可视化。这可以很好地保存组织形态,同时将HRP限制在膜上可以防止标记遮盖任何细胞细胞器。我们将把膜结合的hrp基因置于两个不同启动子之一的控制之下。第一个是钙/钙调蛋白依赖的蛋白激酶II启动子,它会将该标记的表达限制在兴奋性神经元上。再加上病毒只限于细胞体的事实(传统的示踪剂摄取不是这样),这将是可用的空间和功能最特异的示踪剂。第二个启动子将来自活性调节的细胞骨架相关蛋白Arc,该蛋白在强烈的突触激活和行为体验中表达。这将允许识别在学习和可塑性实验中激活的细胞的轴突和树突,以便可以专门检查它们的突触。我们建议创建的工具将在神经解剖学、神经生物学和整个大脑的可塑性研究中有广泛的应用。
与公共健康相关:绘制和表征脑细胞之间的连接是了解大脑如何工作的基础。许多神经系统疾病涉及特定大脑回路或连接的功能障碍,在正常和疾病的大脑中阐明和检查这些连接是至关重要的。该项目的目标是开发新的工具来绘制神经连接图,并在微观层面上清晰地显示它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINNAEA E OSTROFF其他文献
LINNAEA E OSTROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINNAEA E OSTROFF', 18)}}的其他基金
A versatile approach for highly multiplexed, high-resolution imaging of endogenous molecules
一种对内源性分子进行高度多重、高分辨率成像的通用方法
- 批准号:
10505946 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
New strategies for molecular cell-type labeling in volume electron microscopy
体积电子显微镜中分子细胞类型标记的新策略
- 批准号:
10413454 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Methods for serially multiplexed labeling in EM reconstructions of brain tissue
脑组织电镜重建中连续多重标记的方法
- 批准号:
9892040 - 财政年份:2019
- 资助金额:
$ 22.9万 - 项目类别:
Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
- 批准号:
8327806 - 财政年份:2011
- 资助金额:
$ 22.9万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7927173 - 财政年份:2008
- 资助金额:
$ 22.9万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7677846 - 财政年份:2008
- 资助金额:
$ 22.9万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7482804 - 财政年份:2008
- 资助金额:
$ 22.9万 - 项目类别:














{{item.name}}会员




