Quantum dot probes for electron microscopy
用于电子显微镜的量子点探针
基本信息
- 批准号:10043302
- 负责人:
- 金额:$ 44.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAntibody Binding SitesAntigensArchitectureAttentionAxonBindingBinding SitesBlocking AntibodiesBrainBrain MappingCaliberCellsCellular StructuresCollectionComplexCrystallizationDendritesDendritic SpinesDepositionDetectionDevelopmentElectron MicroscopyEnzymesFailureFluorescenceFluorescence MicroscopyFluorescent Antibody TechniqueGoalsGoldGold ColloidImageImmunoelectron MicroscopyImmunofluorescence ImmunologicIndividualLabelLifeLinkLiteratureMapsMethodsMolecularNeurobiologyNeuronsNeurosciencesParaffin EmbeddingPathologyPerformancePeriodicityPeroxidasesPlant ResinsProceduresProcessProteinsProtocols documentationPublishingQuantum DotsReagentReporterResolutionSample SizeSamplingSemiconductorsShapesSignal TransductionStainsStructureSynapsesSystemTechniquesThinnessTimeTissuesTransgenic Organismsbasebrain cellbrain tissuedesignexperimental studyfluorescence microscopefluorophoregenetic manipulationhigh resolution imagingimaging approachimaging modalityimprovedinnovationmetal complexmolecular imagingnanocrystalnanometernanometer resolutionneglectnervous system disorderparticlesample fixationsingle moleculestoichiometrytool
项目摘要
Project Summary/Abstract
The lack of comprehensive maps of brain architecture from molecules to circuits is a critical barrier to
progress in neuroscience, and better, more routine methods for accurately localizing molecules at the
subcellular level are needed. Brain tissue presents a twofold challenge for molecular mapping: in addition to
the obvious need for high-resolution imaging, accurate localization of molecules also requires a means of
visualizing the surrounding cellular and tissue structure to identify not only which subcellular compartment
contains a given molecule, but which cell. Super-resolution fluorescence microscopy has achieved single-
molecule resolution, but reveals only probes, not tissue structure. Electron microscopy (EM) readily reveals
comprehensive tissue structure at sub-nanometer resolution. Methods for molecular imaging at the EM level,
however, remain inefficient and are often unreliable. Newly developed transgenic approaches can facilitate
localization of specific targets by EM, but these require genetic manipulation, offer very limited multiplexing,
and do not reveal endogenous molecules. Postembedding immuno-EM, in which antibody labeling is
performed directly on EM sections, is a much more efficient and versatile approach, but is technically
challenging to the point that it is largely avoided in neurobiology. A crucial unique feature of postembedding
EM labeling, in contrast to the routine, widely used methods for immunolabeling of fixed tissue, is the use of
gold particles for antibody detection. The premise of this proposal is that gold probes are an underappreciated
cause of failure in postembedding labeling, based on the observation that EM sections are amenable to
labeling with fluorescent antibody probes using simple, routine procedures. In contrast to popular fluorescent
antibody probes, gold probes suffer from unfavorable stoichiometry, stearic hinderance, and instability of the
gold-antibody complexes. The central aim of this project is to develop reagents for antibody detection on EM
sections that circumvent these problems. Quantum dots, which are semiconductor nanocrystals that are
visible by EM, are an excellent alternative to gold as they are simple to synthesize in a variety of sizes, shapes,
and elemental compositions, which facilitates both probe optimization and multiplexed labeling. To avoid
reliance on bulky, unstable protein-metal complexes that limit both sensitivity and signal amplification, a
catalyzed reporter deposition (CARD) approach will be used. CARD employs antibody-linked peroxidase
enzymes to catalyze covalent attachment of probe molecules to proteins at the antibody binding site.
Functionalizing quantum dots for use as CARD substrates uncouples the antibody binding step from detection,
so that the relatively bulky EM probe does not interfere with sensitivity, and enzyme-based probe deposition
allows amplification to proceed across time without the limitation of binding-site saturation. This approach is
innovative in that it does not simply replace one label for another, but instead addresses multiple known
causes of poor performance in the existing probes.
项目总结/摘要
缺乏从分子到电路的全面的大脑结构图是一个关键的障碍,
神经科学的进步,以及更好的,更常规的方法来准确地定位分子,
需要亚细胞水平。脑组织对分子作图提出了双重挑战:除了
对高分辨率成像的明显需求,分子的精确定位也需要一种手段,
可视化周围的细胞和组织结构,不仅可以识别哪个亚细胞区室,
包含一个给定的分子,但细胞。超分辨率荧光显微镜已经实现了单-
分子分辨率,但只显示探针,而不是组织结构。电子显微镜(EM)很容易揭示
亚纳米分辨率的全面组织结构。EM水平的分子成像方法,
而且往往不可靠。新开发的转基因方法可以促进
通过EM定位特定靶标,但这些需要遗传操作,提供非常有限的多重化,
并且不显示内源性分子。着床后免疫-EM,其中抗体标记是
直接在EM切片上执行,是一种更有效和通用的方法,但在技术上
这一点在神经生物学中基本上是避免的。植入后的一个重要特征
EM标记,与常规的广泛使用的固定组织免疫标记方法相反,是使用
用于抗体检测的金颗粒。这项建议的前提是,黄金探头是一个低估
植入后标签失败的原因,基于观察结果,即EM切片符合
使用简单的常规程序用荧光抗体探针标记。与流行的荧光灯相比,
抗体探针、金探针遭受不利的化学计量、硬脂酸阻碍和不稳定性。
金抗体复合物本项目的中心目标是开发EM抗体检测试剂
规避这些问题的部分。量子点是半导体纳米晶体,
通过EM可见,是金的极好替代品,因为它们可以简单地合成为各种尺寸,形状,
和元素组成,这有利于探针优化和多重标记。避免
依赖于庞大的、不稳定的蛋白质-金属复合物,限制了灵敏度和信号放大,
将使用催化的报告物沉积(CARD)方法。CARD使用抗体连接的过氧化物酶
酶催化探针分子与蛋白质在抗体结合位点的共价连接。
用作CARD基底的官能化量子点使抗体结合步骤与检测分离,
从而相对庞大的EM探针不干扰灵敏度,并且基于酶的探针沉积
允许扩增跨时间进行而不受结合位点饱和的限制。这种方法
其创新之处在于,它不是简单地用一个标签替换另一个标签,而是解决了多个已知的
现有探头性能差的原因。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Click Chemistry for Visualization of Newly Synthesized RNA and Antibody Labeling on Ultrathin Tissue Sections.
单击 Chemistry 可在超薄组织切片上可视化新合成的 RNA 和抗体标记。
- DOI:10.1093/micmic/ozad067.552
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pérez-Garza,Janeth;Orea,Jairo;Ostroff,Linnaea
- 通讯作者:Ostroff,Linnaea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINNAEA E OSTROFF其他文献
LINNAEA E OSTROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINNAEA E OSTROFF', 18)}}的其他基金
A versatile approach for highly multiplexed, high-resolution imaging of endogenous molecules
一种对内源性分子进行高度多重、高分辨率成像的通用方法
- 批准号:
10505946 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
New strategies for molecular cell-type labeling in volume electron microscopy
体积电子显微镜中分子细胞类型标记的新策略
- 批准号:
10413454 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
Methods for serially multiplexed labeling in EM reconstructions of brain tissue
脑组织电镜重建中连续多重标记的方法
- 批准号:
9892040 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
- 批准号:
8176619 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
- 批准号:
8327806 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7927173 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7677846 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7482804 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:














{{item.name}}会员




