Fundamental Wave-Plasma Processes

基本波等离子体过程

基本信息

  • 批准号:
    ST/F003005/1
  • 负责人:
  • 金额:
    $ 75.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The Earth possesses a magnetic field very similar in shape to the magnetic field produced by a simple bar magnet. Magnetic field lines emerge from the planet at one magnetic pole and extend out of the atmosphere, thousands of kilometres into space, before returning to the magnetic pole in the opposite hemisphere. Rather than being a vacuum, the region of space that these field lines pass through is filled with plasma / an electrically conducting gas made up charged particles. Most of these particles originate in the Earth's atmosphere having been produced by ultraviolet sunlight which ionises gases in the high altitude atmosphere / a region known as the ionosphere. The Sun also possesses a strong magnetic field. As nuclear processes generate energy in the solar interior, the outer layer of the solar atmosphere expands outwards through the solar system forming the solar wind. When the solar wind arrives at the Earth it collides with the planet's magnetic field and is diverted around the planet. The cavity carved out of the solar wind by the Earth's magnetic field is called the magnetosphere. Inside the magnetosphere the plasma and magnetic field generally originate mainly from the Earth. Outside of the magnetosphere, they originate from the Sun. These regions are not always strictly separated and this leads to electromagnetic interactions between our planet and its nearest star. The ionosphere has a major influence on radio waves passing through it while some of the high energy particles that originate from the solar wind become trapped in radiation belts surrounding our planet at distances between 20,000-60,000 km / the part of space occupied by many Earth-orbiting satellites. At high latitudes, charged particles can escape from the radiation belts into precipitate into the upper atmosphere where they excite atmospheric gases to form the aurora borealis (i.e. the 'northern lights'). Clearly, this sun-earth connectivity not only leads to beautiful natural phenomena but also impacts upon the man-made technologies on which we depend. Approximately 99% of universe is estimated to be plasma. In this respect, the solar wind, the magnetosphere and the ionosphere are not exotic. However, plasma does not exist naturally on the surface of the Earth. Therefore, if we are to fully understand how plasma (and therefore most of the universe) behaves we need to exploit the natural plasma laboratory the surrounds our planet. Some of the biggest mysteries surround the interaction of plasmas and electromagnetic waves. For example, wave-plasma interactions (WPI) are thought to be responsible for many of the processes that cause cold plasma to be energised. These include the formation of the Earth's radiation belts or the acceleration of plasmas that cause the aurora and can damage satellites. However, the mechanisms are poorly understood. In a terrestrial setting, wave-particle interactions are frequently used as an energisation mechanism within particle accelerators. Artificially-created and confined plasmas heated by WPI lie at the heart of experimental fusion reactors that offer the hope of clean energy in the future. Clearly, an improved understanding of wave-plasma interactions is vitally important. A five-year programme of research is outlined. It's primary aim is to address this universally relevant physical process. By examining WPI in more accessible regions close to the Earth, where data are abundant, we can extrapolate results to the wider solar system and the universe as a whole. The components of the programme address the physical processes connected with WPI by means of: (a) detailed active experimentation by stimulating WPI processes artificially, (b) measurement and analysis of naturally WPI signatures at a range of spatial scales, (c) theoretical modelling of WPI processes, and (d) exploring WPI processes in different geophysical regions.
地球拥有一个磁场,其形状与一个简单的条形磁铁产生的磁场非常相似。磁力线从地球的一个磁极出现,并延伸出大气层,进入太空数千公里,然后返回到另一个半球的磁极。而不是真空,这些场线通过的空间区域充满了等离子体/由带电粒子组成的导电气体。这些粒子中的大多数起源于地球大气层,是由紫外线阳光电离高空大气层/电离层区域中的气体产生的。太阳也有很强的磁场。由于核过程在太阳内部产生能量,太阳大气的外层通过太阳系向外膨胀,形成太阳风。当太阳风到达地球时,它与地球的磁场发生碰撞,并在地球周围转向。由地球磁场从太阳风中切割出来的空腔被称为磁层。在磁层内部,等离子体和磁场通常主要来自地球。在磁层之外,它们来自太阳。这些区域并不总是严格分开的,这导致了我们的行星和它最近的星星之间的电磁相互作用。电离层对通过它的无线电波有重大影响,而一些来自太阳风的高能粒子被困在环绕地球的辐射带中,距离在20,000 - 60,000公里之间,这是许多地球轨道卫星所占据的空间。在高纬度地区,带电粒子可以从辐射带逃逸到沉淀物中进入高层大气,在那里它们激发大气气体形成北极光(即“北方光”)。显然,这种太阳与地球的连接不仅导致了美丽的自然现象,而且还影响了我们所依赖的人造技术。宇宙中大约99%的物质是等离子体。在这方面,太阳风、磁层和电离层并不是奇异的。然而,等离子体并不自然存在于地球表面。因此,如果我们要充分了解等离子体(以及宇宙的大部分)的行为,我们需要利用我们星球周围的天然等离子体实验室。一些最大的谜团围绕着等离子体和电磁波的相互作用。例如,波-等离子体相互作用(WPI)被认为是导致冷等离子体被激发的许多过程的原因。这些包括地球辐射带的形成或导致极光并可能损坏卫星的等离子体的加速。然而,人们对这些机制知之甚少。在地球环境中,波粒相互作用经常被用作粒子加速器内的一种激励机制。由WPI加热的人工产生和限制的等离子体位于实验聚变反应堆的核心,为未来的清洁能源提供了希望。显然,对波-等离子体相互作用的更好理解是至关重要的。一个五年的研究方案概述。它的主要目的是解决这个普遍相关的物理过程。通过在更接近地球的区域检查WPI,那里的数据丰富,我们可以将结果外推到更广泛的太阳系和整个宇宙。该方案的组成部分通过以下方式处理与WPI有关的物理过程:(a)通过人工刺激WPI过程进行详细的积极实验,(B)在一系列空间尺度上测量和分析自然WPI特征,(c)WPI过程的理论建模,以及(d)探索不同地球物理区域的WPI过程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical simulation of wave-plasma interactions in the ionosphere
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Cannon
  • 通讯作者:
    P. Cannon
Energetic Charged Particles Above Thunderclouds
雷云上方的高能带电粒子
  • DOI:
    10.1007/s10712-012-9205-z
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Füllekrug M
  • 通讯作者:
    Füllekrug M
On the origin of high m magnetospheric waves
高m磁层波的起源
  • DOI:
    10.1029/2009ja014709
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beharrell M
  • 通讯作者:
    Beharrell M
A new method for deducing the effective collision frequency profile in the D-region
  • DOI:
    10.1029/2007ja012650
  • 发表时间:
    2008-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew J. Beharrell;F. Honary
  • 通讯作者:
    Matthew J. Beharrell;F. Honary
Case study of the mesospheric and lower thermospheric effects of solar X-ray flares:: coupled ion-neutral modelling and comparison with EISCAT and riometer measurements
太阳 X 射线耀斑的中层和低热层效应案例研究:耦合离子中性建模以及与 EISCAT 和测流计测量的比较
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Enell C. -F.
  • 通讯作者:
    Enell C. -F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farideh Honary其他文献

Auroral substorm onset in satellite-based global images and ground-based all-sky images
卫星全球图像和地面全天图像中的极光亚暴爆发
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akimasa Ieda;Kirsti Kauristie;Yukitoshi Nishimura;Yukinaga Miyashita;Harald U. Frey ;Liisa Juusola;Daniel Whiter;Masahito Nose;Matthew O. Fillingim;Farideh Honary;Neil C. Rogers ;Yoshizumi Miyoshi;Tsubasa Miura;Takahiro Kawashima and Shinobu
  • 通讯作者:
    Takahiro Kawashima and Shinobu
電離圏電気伝導度を算出するための衝突周波数
用于计算电离层电导率的碰撞频率
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akimasa Ieda;Kirsti Kauristie;Yukitoshi Nishimura;Yukinaga Miyashita;Harald U. Frey ;Liisa Juusola;Daniel Whiter;Masahito Nose;Matthew O. Fillingim;Farideh Honary;Neil C. Rogers ;Yoshizumi Miyoshi;Tsubasa Miura;Takahiro Kawashima and Shinobu ;家田 章正
  • 通讯作者:
    家田 章正
Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association
欧洲非相干散射科学协会 X 模式加热实验期间观察到的受激电磁发射光谱
  • DOI:
    10.26464/epp2019042
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Xiang Wang;Chen Zhou;Tong Xu;Farideh Honary;Michael Rietveld;Vladimir Frolov
  • 通讯作者:
    Vladimir Frolov

Farideh Honary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farideh Honary', 18)}}的其他基金

Space Weather Instrumentation, Measurement, Modelling and Risk: Ionosphere (SWIMMR-I)
空间天气仪器、测量、建模和风险:电离层 (SWIMMR-I)
  • 批准号:
    NE/V002686/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Research Grant
Space weather effects on airline communications in the high latitude regions
空间天气对高纬度地区航空通信的影响
  • 批准号:
    EP/K007971/1
  • 财政年份:
    2013
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Research Grant
Quantifying Energetic Particle Precipitation into the Atmosphere (QEPPA)
量化大气中的高能粒子降水量 (QEPPA)
  • 批准号:
    NE/J007773/1
  • 财政年份:
    2013
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Research Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Effects of Coupled Wave Power and Plasma Properties on Radiation Belt Dynamics
耦合波功率和等离子体特性对辐射带动力学的影响
  • 批准号:
    NE/X000389/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Research Grant
An observational and numerical simulation study of plasma instability related with substorm injections and ULF wave excitation
与亚暴注入和 ULF 波激发相关的等离子体不稳定性的观测和数值模拟研究
  • 批准号:
    22KJ0532
  • 财政年份:
    2023
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Kelvin-Helmholtz Instability and Magnetosonic Wave Emission Along Bursty Bulk Flow Channel Boudaries: Impacts on Near-Earth Plasma Sheet Dynamics During Substorms
沿突发散装流通道边界的开尔文-亥姆霍兹不稳定性和磁声波发射:亚暴期间对近地等离子体片动力学的影响
  • 批准号:
    2314759
  • 财政年份:
    2023
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Standard Grant
Research related to burning wave propagation in ultra-high-density hydrogen and deuterium plasma
超高密度氢、氘等离子体中燃烧波传播的相关研究
  • 批准号:
    22H00118
  • 财政年份:
    2022
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Studies of current profile formation in a lower-hybrid wave driven tokamak plasma
低混合波驱动托卡马克等离子体中电流分布形成的研究
  • 批准号:
    22K03573
  • 财政年份:
    2022
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy Transport and Plasma Wave Analysis from a Basic Plasma Experiment
基本等离子体实验中的能量传输和等离子体波分析
  • 批准号:
    573079-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 75.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Dynamic Plasma/Metal/Dielectric Crystals as mm-wave to Thz Communications and Sensing Devices, and Testing of Drude Model
动态等离子体/金属/电介质晶体作为毫米波到太赫兹通信和传感设备,以及 Drude 模型的测试
  • 批准号:
    2223929
  • 财政年份:
    2022
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Standard Grant
CAREER: Impact of Plasma Species, Mixing and Ionization Fraction on Drift-Wave Turbulence and Transport
职业:等离子体种类、混合和电离分数对漂移波湍流和传输的影响
  • 批准号:
    2144099
  • 财政年份:
    2021
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Continuing Grant
Development of effective conservative therapy for refractory patellar tendonitis Synergistic effect of platelet-rich plasma therapy and extracorporeal shock wave therapy
难治性髌腱炎有效保守治疗的发展 富血小板血浆治疗与体外冲击波治疗的协同作用
  • 批准号:
    21K11400
  • 财政年份:
    2021
  • 资助金额:
    $ 75.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Slow-wave sleep enhancement in those at risk for Alzheimer's disease: Links with memory, excitotoxicity, and plasma A-beta
慢波睡眠可增强阿尔茨海默病风险人群:与记忆、兴奋性毒性和血浆 A-β 的联系
  • 批准号:
    10207060
  • 财政年份:
    2021
  • 资助金额:
    $ 75.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了