Use of cellphone-based time-activity data for air pollutant exposure estimation

使用基于手机的时间活动数据进行空气污染物暴露估算

基本信息

  • 批准号:
    8145293
  • 负责人:
  • 金额:
    $ 19.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-20 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Exposure to air pollution is associated with a variety of adverse health outcomes. Measuring human exposures to ambient air pollutants is challenging, particularly in large epidemiologic studies in which direct monitoring is not feasible. Thus, several exposure estimation methods, including land use regression and Kriging, have been developed to estimate individual exposures within urban areas. A major limitation of these methods is their use of residential address to estimate exposures. Because of the variation in air pollutant concentrations within an urban area, a residential exposure may differ substantially from exposures experienced while away from home. We propose an innovative, feasible, and cost-effective method to measure time-activity data, i.e. human movement over time, and incorporate these data into current residence-based methods of air pollutant exposure estimation. We will use cell phones equipped with global positioning system (GPS) to measure the daily movements of 40 cell phone-using volunteers in western New York for a period of three months. The cell phones will measure and record the person's location, measured as geocoordinates, several times a day throughout the study period. We will also design two models to estimate fine particulate matter (PM2.5) concentrations in this region. These models, a land use regression model and a Kriging model, will both be constructed from PM2.5 concentrations measured at local monitoring sites. We will apply the geocoordinates measured using the cell phones to each of the models to obtain a cell phone-based PM2.5 exposure estimate for each participant. We will develop techniques to improve the efficiency of this procedure so that it is feasible for use in epidemiologic studies. By incorporating time-activity data into air pollutant exposure estimation models, we will improve the accuracy with which we can measure the associations between air pollution and health outcomes. PUBLIC HEALTH RELEVANCE: This project will be the development of a method to improve our ability to estimate human exposures to air pollutants. This method will improve public health by allowing researchers to more accurately measure human air pollutant exposures and relate these exposures to health outcomes.
描述(由申请人提供):暴露于空气污染与各种不良健康结果有关。测量人类对环境空气污染物的暴露具有挑战性,特别是在直接监测不可行的大型流行病学研究中。因此,已经开发了几种暴露估计方法,包括土地利用回归和克里格法,以估计城市地区内的个人暴露。这些方法的一个主要局限性是使用居住地址来估计暴露。由于城市地区内空气污染物浓度的变化,住宅暴露可能与离家时经历的暴露有很大不同。我们提出了一种创新的,可行的,具有成本效益的方法来测量时间活动数据,即随着时间的推移,人类的运动,并将这些数据纳入目前的基于居住地的空气污染物暴露估计方法。我们将使用装有全球定位系统(GPS)的手机来测量纽约西部40名使用手机的志愿者的日常活动,为期三个月。手机将测量和记录人的位置,测量为地理坐标,每天几次在整个研究期间。我们还将设计两个模型来估计该地区的细颗粒物(PM2.5)浓度。这些模型,一个土地利用回归模型和克里格模型,都将构建从PM2.5浓度在当地监测站点测量。我们将使用手机测量的地理坐标应用于每个模型,以获得每个参与者基于手机的PM2.5暴露估计。我们将开发技术,以提高这一程序的效率,使其在流行病学研究中的使用是可行的。通过将时间活动数据纳入空气污染物暴露估计模型,我们将提高测量空气污染与健康结果之间关联的准确性。 公共卫生相关性:该项目将开发一种方法,以提高我们估计人类暴露于空气污染物的能力。这种方法将通过允许研究人员更准确地测量人类空气污染物暴露并将这些暴露与健康结果联系起来来改善公众健康。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies.
  • DOI:
    10.1515/reveh-2012-0012
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Li Y;Rittenhouse-Olson K;Scheider WL;Mu L
  • 通讯作者:
    Mu L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lina Mu其他文献

Lina Mu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lina Mu', 18)}}的其他基金

THE PRENATAL AND CHILDHOOD MECHANISMS OF HEALTH DISPARITIES; INITIAL RECRUITMENT AND RETENTION
产前和儿童期健康差异的机制;
  • 批准号:
    10936045
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
Metabolomics Profiling of Biological Responses to Changes in Air Pollution Levels
对空气污染水平变化的生物反应的代谢组学分析
  • 批准号:
    9298659
  • 财政年份:
    2016
  • 资助金额:
    $ 19.11万
  • 项目类别:
Biological Response to Air Quality Change in Beijing pre-, mid- and post-Olympics
北京奥运会前、中、后空气质量变化的生物响应
  • 批准号:
    8041543
  • 财政年份:
    2011
  • 资助金额:
    $ 19.11万
  • 项目类别:
Biological Response to Air Quality Change in Beijing pre-, mid- and post-Olympics
北京奥运会前、中、后空气质量变化的生物响应
  • 批准号:
    8223211
  • 财政年份:
    2011
  • 资助金额:
    $ 19.11万
  • 项目类别:
Biological Response to Air Quality Change in Beijing pre-, mid- and post-Olympics
北京奥运会前、中、后空气质量变化的生物响应
  • 批准号:
    8415522
  • 财政年份:
    2011
  • 资助金额:
    $ 19.11万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 19.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了