Thyroid hormone receptors - regulation and function
甲状腺激素受体 - 调节和功能
基本信息
- 批准号:8010993
- 负责人:
- 金额:$ 9.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-15 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectArtsBiologicalCardiovascular DiseasesCell Culture TechniquesChromatinComplexDataDeacetylaseDevelopmentDiabetes MellitusEmbryoEnzymesEpigenetic ProcessFundingGene ExpressionGene TargetingGenetic TranscriptionGoalsHistone DeacetylaseHormone ReceptorHormonesIn VitroInflammationKnock-outKnockout MiceLaboratoriesLeadLigandsLightMalignant NeoplasmsMediatingMetabolicMetabolic DiseasesMetabolismMethodsModelingMusMutant Strains MiceMutationNuclear ReceptorsObesityPathway interactionsPhenocopyPhenotypePhysiologicalPoint MutationPropertyProtein IsoformsRegulationRepressionRoleSilencing Mediator of Retinoid Thyroid ReceptorSpecificityTechnologyTestingTherapeutic InterventionThyroid Hormone ReceptorTimeTissuesTransgenic OrganismsWorkbasegene repressionhistone deacetylase 3in vivoinnovationinsightmembermutantnovelpreventreceptor functionrecombinase
项目摘要
DESCRIPTION (provided by applicant): Thyroid hormone receptors (TRs) are ligand-dependent, transcriptional regulators of metabolism. TRs repress gene expression in the absence of hormone, which is paradigmatic for other nuclear receptors (NRs) that function as repressors in the unliganded state. Repression is mediated by interaction with corepressors N- CoR (Nuclear Receptor Corepressor) and SMRT (Silencing Mediator of Retinoid and Thyroid receptors), which exist in stoichiometric association with the chromatin-modifiying enzyme, histone deacetylase 3 (HDAC3). HDAC3, in turn, derives its catalytic activity from interacting with N-CoR/SMRT via their unique Deacetylase Activation Domain (DAD). The DAD-dependent N-CoR/SMRT7HDAC3 complex is critical for repression by TR and other NRs in vitro, but the role of this interaction in vivo is unknown. Here we propose to use state of the art methods of gene targeting and mouse phenotyping to test, for the first time, the physiological relevance of the N-CoR7HDAC3 and SMRT7HDAC3 corepressor complexes. We hypothesize that these DAD-dependent interactions are very important, and affect distinct physiological pathways involving NRs. Specific Aim 1 is to determine the physiological function of the N-CoR DAD domain. Knockout of N-CoR is embryonic lethal; we hypothesize that interaction with HDAC3 subserves a subset of N-CoR's developmental and physiological functions. To discover what those functions are, we have generated mice with a point mutation in the N-CoR DAD domain that prevents HDAC3 interaction. Preliminary data demonstrate that mice homozygous for this mutation are viable, with intriguing abnormalities that point to the biological importance of N-CoR7HDAC3. Specific Aim 2 is to determine the physiological function of the SMRT DAD domain. Similar to N-CoR, the physiological role of SMRT7HDAC3 is unknown. We hypothesize that SMRT subserves unique functions that are mediated by HDAC3, and may also have HDAC3-dependent functions that are redundant with those of N-CoR. We will test these hypotheses by generating knockin mice with a point mutation in the SMRT DAD domain. The N-CoR and SMRT homozygous mutant mice, and doubly homozygous mutants, will be carefully analyzed to determine the physiological function of the N-CoR/SMRT7HDAC3 interaction. Specific Aim 3 is to determine the physiological, tissue-specific functions of HDAC3. HDAC3 will be deleted in mice to test the hypothesis that losses of HDAC3 function will phenocopy the doubly homozygous N-CoR/SMRT DAD mutant mice. The HDAC3 knockout will be conditional, enabling us to investigate tissue-specific functions of HDAC3. Together, these innovative and unique studies will elucidate mechanisms regulating transcription repression by TR and other NRs in a physiological context. The insights gained from this work will shed new light on the transcriptional and epigenetic control of key biological pathways, including metabolism and inflammation. This has the potential to lead to new and deeper insights into metabolic disorders, such as obesity, diabetes, and cardiovascular disease, as well as cancer.
Relevance: In the past decade, corepressors have emerged as critical regulators of hormone receptors. The proposed studies will innovatively and uniquely elucidate mechanisms regulating the action of hormones and other metabolic regulators. The insights gained from this work will shed new light on key biological pathways, with the potential to lead to new and deeper insights into metabolic disorders, including obesity, diabetes, and cardiovascular disease, as well as cancer.
DESCRIPTION (provided by applicant): Thyroid hormone receptors (TRs) are ligand-dependent, transcriptional regulators of metabolism. TRs repress gene expression in the absence of hormone, which is paradigmatic for other nuclear receptors (NRs) that function as repressors in the unliganded state. Repression is mediated by interaction with corepressors N- CoR (Nuclear Receptor Corepressor) and SMRT (Silencing Mediator of Retinoid and Thyroid receptors), which exist in stoichiometric association with the chromatin-modifiying enzyme, histone deacetylase 3 (HDAC3). HDAC3, in turn, derives its catalytic activity from interacting with N-CoR/SMRT via their unique Deacetylase Activation Domain (DAD). The DAD-dependent N-CoR/SMRT7HDAC3 complex is critical for repression by TR and other NRs in vitro, but the role of this interaction in vivo is unknown. Here we propose to use state of the art methods of gene targeting and mouse phenotyping to test, for the first time, the physiological relevance of the N-CoR7HDAC3 and SMRT7HDAC3 corepressor complexes. We hypothesize that these DAD-dependent interactions are very important, and affect distinct physiological pathways involving NRs. Specific Aim 1 is to determine the physiological function of the N-CoR DAD domain. Knockout of N-CoR is embryonic lethal; we hypothesize that interaction with HDAC3 subserves a subset of N-CoR's developmental and physiological functions. To discover what those functions are, we have generated mice with a point mutation in the N-CoR DAD domain that prevents HDAC3 interaction. Preliminary data demonstrate that mice homozygous for this mutation are viable, with intriguing abnormalities that point to the biological importance of N-CoR7HDAC3. Specific Aim 2 is to determine the physiological function of the SMRT DAD domain. Similar to N-CoR, the physiological role of SMRT7HDAC3 is unknown. We hypothesize that SMRT subserves unique functions that are mediated by HDAC3, and may also have HDAC3-dependent functions that are redundant with those of N-CoR. We will test these hypotheses by generating knockin mice with a point mutation in the SMRT DAD domain. The N-CoR and SMRT homozygous mutant mice, and doubly homozygous mutants, will be carefully analyzed to determine the physiological function of the N-CoR/SMRT7HDAC3 interaction. Specific Aim 3 is to determine the physiological, tissue-specific functions of HDAC3. HDAC3 will be deleted in mice to test the hypothesis that losses of HDAC3 function will phenocopy the doubly homozygous N-CoR/SMRT DAD mutant mice. The HDAC3 knockout will be conditional, enabling us to investigate tissue-specific functions of HDAC3. Together, these innovative and unique studies will elucidate mechanisms regulating transcription repression by TR and other NRs in a physiological context. The insights gained from this work will shed new light on the transcriptional and epigenetic control of key biological pathways, including metabolism and inflammation. This has the potential to lead to new and deeper insights into metabolic disorders, such as obesity, diabetes, and cardiovascular disease, as well as cancer.
Relevance: In the past decade, corepressors have emerged as critical regulators of hormone receptors. The proposed studies will innovatively and uniquely elucidate mechanisms regulating the action of hormones and other metabolic regulators. The insights gained from this work will shed new light on key biological pathways, with the potential to lead to new and deeper insights into metabolic disorders, including obesity, diabetes, and cardiovascular disease, as well as cancer.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MITCHELL A. LAZAR其他文献
MITCHELL A. LAZAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MITCHELL A. LAZAR', 18)}}的其他基金
PPARa and related nuclear receptors in non-alcoholic fatty liver disease
PPARa 和相关核受体在非酒精性脂肪肝中的作用
- 批准号:
10210669 - 财政年份:2021
- 资助金额:
$ 9.95万 - 项目类别:
PPARa and related nuclear receptors in non-alcoholic fatty liver disease
PPARa 和相关核受体在非酒精性脂肪肝中的作用
- 批准号:
10372221 - 财政年份:2021
- 资助金额:
$ 9.95万 - 项目类别:
PPARa and related nuclear receptors in non-alcoholic fatty liver disease
PPARa 和相关核受体在非酒精性脂肪肝中的作用
- 批准号:
10576286 - 财政年份:2021
- 资助金额:
$ 9.95万 - 项目类别:
Genome-wide epigenetic control of circadian metabolism by heme receptor Rev-erb
血红素受体 Rev-erb 对昼夜节律代谢的全基因组表观遗传控制
- 批准号:
7817388 - 财政年份:2009
- 资助金额:
$ 9.95万 - 项目类别:
Univ of Pennsyvania Diabetes Endocrinology Res Ctr
宾夕法尼亚大学糖尿病内分泌研究中心
- 批准号:
7980511 - 财政年份:2009
- 资助金额:
$ 9.95万 - 项目类别:
Genome-wide epigenetic control of circadian metabolism by heme receptor Rev-erb
血红素受体 Rev-erb 对昼夜节律代谢的全基因组表观遗传控制
- 批准号:
7934606 - 财政年份:2009
- 资助金额:
$ 9.95万 - 项目类别:
Nuclear Receptor Coregulator Functional Pathology in Metabolic Disease
代谢性疾病中的核受体共调节功能病理学
- 批准号:
7350615 - 财政年份:2007
- 资助金额:
$ 9.95万 - 项目类别:
Differentiated funtion of tissues involved in nutrition and metabolism
参与营养和代谢的组织的分化功能
- 批准号:
7499959 - 财政年份:2007
- 资助金额:
$ 9.95万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 9.95万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 9.95万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 9.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 9.95万 - 项目类别:
Studentship